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Abstract— Two-dimensional (2-D) nanomaterials provide
opportunities for a wide range of applications. In order to
harness their usefulness,understandingand controlling the
interface between 2-D crystals and other materials is of
paramount importance. For electronic device applications,
large contact resistance and difficulty integrating high-
quality dielectrics are the most pressing challenges. In this
review, we describe the progress and core challenges of
various contact and gate engineering approaches in order
to guide the direction of future research toward fabricating
useful devices based on 2-D nanomaterials.

Index Terms— 2-D, atomic layer deposition (ALD),
carrier injection, contact resistance, field-effect transis-
tor (FET), molybdenum disulfide (MoS2), plasma-enhanced
ALD (PEALD).

I. INTRODUCTION

OVER the past decade, atomically thin, 2-D nanomaterials
have become an active platform for investigating a wide

range of novel physical phenomena and applications [1], [2].
Starting with graphene, new 2-D nanomaterials with diverse
properties continue to emerge, from insulator to metallic, and
from elemental to compound [3]. Applications based on 2-D
nanomaterials are as expansive as the variety of materials
themselves, including electronics, energy storage, photonics,
and sensors. The ultrathin nature of semiconducting 2-D
crystals offers particular promise for future scaled electronic
devices. While considerable progress has been made in
scaled high-performance 2-D transistors [4]–[8], significant
challenges remain related to interfaces with the 2-D crystals in
these devices. The 2-D surface (basal) plane has no dangling
bonds, making contact metal and gate dielectric interfacing
unique and challenging, as illustrated in Fig. 1.

Among the 2-D crystal options, semiconducting transition-
metal dichalcogenides (TMDs) have attracted most of the
attention for electronic devices, with additional considera-
tion of so-called X-enes (e.g., silicene [9], germanene [10],
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Fig. 1. Schematic overview of challenges for contact and gate interfaces
in a typical 2-D FET with MoS2 channel, Au contacts, and HfO2 gate
dielectric.

phosphorene or black phosphorous (BP) [11], and for some
applications, graphene [12]). There have been several review
papers comprehensively covering aspects of contact engi-
neering to these various 2-D nanomaterials [13]–[18]. In
this review, we focus on the core challenges of the 2-D
nanomaterial interfaces (for both contacting as well as gating)
and identify key questions and objectives to guide further
research. We first cover contact geometries, the contact inter-
face, and the largely neglected contact scaling issue, which
is of utmost importance for 2-D devices given the motivation
for using them at scaled dimensions. After proposing a holistic
view to assess contact engineering approaches, we turn to gate
engineering. A typical process of growing dielectrics using
atomic layer deposition (ALD) is introduced. Then, we dis-
cuss different approaches for improving the gate dielectric
quality, including surface treatment, buffer layers, and ALD
process modification.

II. CONTACTS TO 2-D FETS

The contact interface for 2-D field-effect transistors (FETs)
typically involves a 3-D contact on the top of the 2-D
nanomaterial, as illustrated in Fig. 2(a) with molybdenum
disulfide (MoS2) as an example. Although the physics of
interfacial interactions and carrier injection mechanisms are
not fully understood, it is generally believed that electrons
first tunnel through the van der Waals gap between the metal
contacts and the 2-D nanomaterial, depicted as the red arrows
in Fig. 2(a) and (b) [14]. Then, the injected electrons from
the source contact flow to the drain under an electric field
from Vds. Transistors benefit most from output curves (Id –Vds)
with features like those in Fig. 2(c). According to the final
(2015) ITRS roadmap [19], a device for low-power applica-
tions around 2030 has to sustain sufficient ON-current (ION =
1500 μA/μm) and operate at a low supply voltage of Vdd ≤
0.5 V with ohmic contacts and a small contact resistance.
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Fig. 2. Overview of transport at the contacts at a typical metal-2-D
interface. (a) Simplified and cross-sectional diagram of carrier injection.
(b) Band diagram of the interface assuming a weak bonding between
the contact and the TMDs. (c) Example of the desired output curves
and parameters for an n-type 2-D FET in the 2030 era [19]. (a) and
(b) Reprinted from [46].

Fig. 3. Three different contact geometries. (a) Metal top contacts where
the contact rests on the top of the 2-D nanomaterial. (b) In-plane 2-D
contacts, including graphene and metallic 1T TMDs, adapted with per-
mission from [38] and [42], respectively. (c) Metal edge contacts.

A. Contact Geometries and Materials

There are primarily three different contact geometries that
have been explored for 2-D FETs: top contacts, in-plane 2-D
contacts, and edge contacts. The vast majority of studies use
the top contacts due to the simplicity of fabrication. As shown
in Fig. 3(a), 3-D metal top contacts rest on the top of the
2-D nanomaterial. Approaches for improving the 2-D FET
performance with the top contacts include using different
contact metals [6], [7] [20], [21], annealing [22], [23], adding
an interlayer at the contact interface [24]–[28], engineering
surface states [29], and doping chemically [30]–[33] or
physically [34].

The second type of contact geometry uses 2-D nanomate-
rials, such as graphene, to form an in-plane contact interface
[Fig. 3(b)]. For example, the interaction between MoS2 and
graphene has exhibited ohmic contact behavior [35]–[40].
Note that an “ohmic contact” does not guarantee small contact
resistance as linear output curves (at small Vds) could have
a small slope, and thus a large contact resistance. Some 2-D
crystals, such as MoS2, exhibit both semiconducting and
metallic phases, enabling the use of the metallic phase to create
an in-plane 2-D contact [41]. Note that this phase engineering

requires high-processing temperature of 600 °C [42] and
thus is not compatible with the traditional semiconductor
fabrication processing. Electrostatic doping has also been
reported to induce the structural phase transition in monolayer
MoTe2 [43]; however, more work is needed to implement
fabrication-friendly phase engineering that yields better
contacts.

Finally, edge contacts [Fig. 3 (c)] to 2-D nanomaterials have
been demonstrated [8], [44], [45]. The most notable example
uses a chromium (Cr) edge contact to graphene that yields
contact resistance as low as 150 � · μm [8]. While edge
contacts to MoS2 have received limited investigation, mole-
cular dynamic simulation for the metal-MoS2 edge contacts
suggest they can outperform top contacts due to more intimate
orbital overlapping between the metal atoms and edge states of
MoS2 [46]. Yet, despite such promise, experimental realiza-
tions of edge contacts show small ON-currents, possibly due to
the sensitive MoS2 edge states and small contact area exposed
on the edge [44], [45]. The possibility of a more efficient
contact between the MoS2 edge and metal is intriguing and
requires more in-depth research. In Section II-D, recent results
on the advantageous scalability of edge contacts will be
discussed.

B. Contact Interface

Understanding the contact interface is pivotal for improving
carrier transport. Here, we discuss two important questions that
warrant further research.

Is interfacial reaction helpful or harmful? Some metals,
such as Ti, have been found to form compounds with S
in MoS2 in the top contact geometry [47], [48]. The TixSy

compound was formed under ultra-high vacuum conditions,
as confirmed by X-ray photoelectron spectroscopy (XPS)
[Fig. 4(a)]. The covalent bonds between metal and MoS2
are likely due to S vacancies present on the MoS2 surface.
However, the formation of these bonds does not guarantee
superior performance, as Ti still forms a worse contact than
Cr and other high work function metals such as Au and
Ni [49]. Another contact interface challenge is the manifes-
tation of a Fermi-level pinning-like behavior, as shown in
Fig. 4(b) [50]. Density functional theory simulations suggest
the Fermi pinning is a result of interfacial interactions, where
the metal work function can be modulated by interface dipoles
due to charge redistribution [51]. A recent study [Fig. 4(c)]
on transferred metal demonstrates a substantially quenched
Fermi-level pinning effect, attributed to the pure van der Waals
interface produced by the transferred metal approach [52].
The study also suggested that the commonly used metal evap-
oration approach promotes a metal-2-D interfacial interaction
(via damage to the 2-D crystal), leading to a strong Fermi-level
pinning effect.

On the other hand, according to some theoretical sim-
ulations, different bonding strengths and orbital overlap-
ping between metals and 2-D materials could lead to a
small Schottky barrier and thus high carrier injection effi-
ciency [46], [53]–[55]. Many experimental studies intention-
ally add defects to the contact region to promote more covalent
bonds and interfacial reactions at the metal-2-D interface and
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Fig. 4. Understanding the contact interface. (a) XPS characterization
of interface chemistry of Ti on MoS2 showing hybridization and covalent
bonds at the interface. Adapted from [47] with permission. Copyright
2016 American Chemical Society. (b) Illustration of Fermi-level pinning
at the metal-2-D interface. Adapted from [50]. Copyright 2017 American
Chemical Society. (c) Comparison of evaporated metal and transferred
metal showing strong Fermi-level pinning effect for the evaporated metal
and obedience to the Schottky–Mott law for the transferred metal.
Adapted from [52] with permission. Copyright 2018 Springer Nature.

do observe improvement in the contact performance [56]–[58].
The proposed mechanism for these experimental observations
typically involves: creation of defects → more metal-2-D
bonds → smaller (or thinner) Schottky barriers → smaller Rc.
However, there are many open questions remaining to be
answered, such as how high the suitable defect density is and
how metal-2-D bonds impact the Schottky barrier. Thus, there
has yet to be a comprehensive picture that captures exactly
how interfacial interactions impact the carrier injection, and
thus, further studies are needed.

How does contact gating and 2-D nanomaterial thickness
influence the transfer length? The back-gate geometry (typi-
cally using a doped Si substrate as the gate electrode) is the
most commonly used gating approach in 2-D FETs due to
the ease of fabrication. In a back-gated device, the metal-
2-D interface will be modulated by the back gate, creating
a contact gating scenario. Contact gating has been examined
in the past, and the transfer length (LT ) was extracted to be
∼0.63 μm for monolayer devices using LT = (ρc/Rsh)

1/2,
in which ρc is the metal-2-D interfacial resistance and Rsh is
the lateral sheet resistance of the 2-D material underneath the
metal contact [59]. However, more recently, a two-path carrier
injection model has been applied by [60] and [61], both of
which suggest a much smaller LT for back-gated monolayer
2-D devices. In the two-path model, path 1 represents carrier

injection from the metal to the edge of the 2-D channel, and
path 2 accounts for carriers vertically tunneling to the metal-
covered 2-D crystal and then laterally traveling to the channel
region. The back-gate modulation of the metal-2-D interface
allows for even more carriers in path 2, which explains why
back-gated geometries outperform top-gated geometries with
the same monolayer [62] and seven layers [59] 2-D channels.

Even when using the same gate geometry, 2-D nanomaterial
thickness (number of layers) can also impact the transfer
length. The 2-D thickness is a major factor impacting overall
device performance [6], [63]. One experimental study found
that Ti-6L MoS2 have a larger LT than that of Ti-2L MoS2
with the same back-gate overdrive voltage [64]. However,
in the top-gate geometries, how a different number of 2-D
layers affect transfer length remains unclear. A theoretical
study estimated that for monolayer and bilayer 2-D devices
with back-gate control, LT is close to 1 nm, as most carriers
would accumulate at the metal-2-D edge (path 1) [61]. How-
ever, another experimental study of contact scaling estimated
the LT to be ∼35 nm for devices with 2–3 layers MoS2 in
a back-gated geometry [7]. These discrepancies represent the
need for further theoretical and experimental investigation of
the impact of contact gating and 2-D nanomaterial thickness
on the transfer length and carrier injection.

C. Contact Scaling

The advantage of 2-D crystals as a channel material is most
obvious in sub-10-nm dimensions as its ultrathinness allows
for extremely scaled channel lengths (Lch ≤ 10 nm), at which
silicon (Si) would not be able to achieve satisfactory perfor-
mance [5], [65], [66]. For a fully scaled device technology,
both the channel and contact lengths must be scaled to sub-
10 nm. Yet, contact scaling has been largely neglected for
2-D FETs. Papers reporting the most promising performance
for 2-D FETs, even at small channel lengths, have contact
lengths of hundreds of nanometers to several micrometers
[7], [30]. Contact scaling based on the top metal contacts
[Fig. 5(a)] has shown severely degraded performance, espe-
cially when the contact length Lc (length over which the metal
covers the 2-D crystals in the direction of carrier transport)
drops below the transfer length, LT [∼30–40 nm for the top-
contacted MoS2 of exfoliated 2–3 layers) [7], as shown in the
inset of Fig. 5(b)].

Edge contacts (effective Lc = 1 nm) have the potential
to yield ultimate scalability, down to sub-5 nm, since the
carrier injection area is independent of Lc. Recently, edge
contacts to chemical vapor deposition (CVD)-grown MoS2
films were reported [67], with the device schematics shown
in Fig. 5(c). Two edge-contacted MoS2 FETs (Lc = 60 nm
and Lc = 20 nm) were fabricated on the same 2-D film. Cross-
sectional scanning transmission electron microscope (STEM)
imaging shows the abrupt interface of the metal contact and
edge of the MoS2 in Fig. 5(d). These two edge-contacted
devices, with the same Lch but different Lc, exhibited the same
current [Fig. 5(e)] and contact resistance [67]. The fact that
device performance can be independent of the physical Lc

using edge contacts is encouraging, and further experimental
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Fig. 5. Scaling contact length in MoS2 FETs. (a) Cross-sectional TEM
image of scaled top contacts. (b) Performance degrades as the contact
length decreases. (a) and (b) Adapted from [7] with permission. Copyright
2016 American Chemical Society. (c) Schematic showing edge contacts
with different Lc. (d) Cross-sectional STEM images of an edge contact.
(e) Similar device performance despite different Lc demonstrates the
better scalability of edge contacts. (c) to (e) Adapted from [67].

TABLE I
BENCHMARKING REPRESENTATIVE 2-D FETS

and theoretical studies investigating the edge interface and
improving its performance are needed.

D. From Contact to Device

Instead of benchmarking every available contact approach
based only on one or two isolated metrics (typically con-
tact resistance), which has been done to some degree in
[14] and [13]. In Table I, we list the state-of-the-art contact
engineering progress with emphasis on several key metrics.
A selection of the best representative contact engineered MoS2

and BP FETs was chosen, as these two materials are the
most researched 2-D semiconductors and their advances could
provide guidelines for other 2-D FETs. Most of the devices
listed have contact resistance (Rc) below 1 k� · μm, except
devices based on CVD films, which are listed in the shaded
rows. We include parameters such as channel length (Lch),
flake thickness in the channel (Tch), and carrier density (n),
where n = VovCox/q, with overdrive voltage Vov = Vgs − Vth,
Cox as the capacitance of the gate dielectric, and q as the
elementary charge.

The need for considering the collection of metrics in Table I
when analyzing the performance of a given 2-D FET is based
on the frequent incongruence of actual device performance
(e.g., Ion) and favorable metrics (e.g., Rc). For example,
phase engineered 1T MoS2 contacts were reported to yield
the smallest contact resistance of 200 � · μm, yet produced
disproportionately low ON-current, even with a relatively short
Lch of 0.7 μm. Cl doping yielded the highestIon, yet it
required the highest n of 21.6 ×1012 cm−2. The larger carrier
density gives rise to a smaller estimated Rc. As shown in the
shaded rows in Table I, devices built on CVD-grown MoS2
films typically have a higher Rc and more effort is needed
to improve the quality of CVD films and subsequent contact
interfaces.

Most BP devices show decent ON-current but with
small ON–OFF current ratios (on the order of 103), even
though oxides with equivalent oxide thickness (EOT)
of 1–4 nm were used in [70], [72], and [73].
Record low Rc of 180 � · μm has been reported, but the
F4-TCNQ doping used to realize it also decreases the ON–OFF

ratio to 102, making this approach less appealing. Extracting
Ion and Rc before compensating for Vth shift and considering
the Vov is a common mistake that leads to overestimation
in performance related to the contacts [32], [33], [74], [75].
Further exploration is needed to improve the Ion for MoS2
FETs and decrease the Ioff for BP FETs as they are still far
from the target performance outlined in Fig. 2(c) and many
simulation studies [76], [77].

Moving forward, when assessing future advances in
contact engineering, a comprehensive view must be taken
to evaluate the true potential of reported approaches. Rc

should be reported together with its associated carrier density,
especially in scenarios with contact gating. The impact of
device dimensions and contact gating must be accounted for
[60] and [61]. Other critical issues, such as variability and
yield, may seem less exciting to study, but constitute the
most substantial roadblocks for making 2-D electronics a
viable technology.

III. GATING OF 2-D FETS WITH ALD DIELECTRICS

Nanomaterials require a protective layer for most appli-
cations, whether for passivation, as with BP that degrades
rapidly in ambient conditions, or as part of a device, as for
all types of FETs [4], [72], [78]–[84]. For most appli-
cations, the passivation layer must be dielectric, thin, and
high quality; the common approach for obtaining such films
is using ALD. While there are other dielectric deposition
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Fig. 6. Basic ALD process flow for a metal oxide showing the two
most prominent oxidants that are used: H2O (thermal ALD) and plasma
(PEALD).

approaches under consideration for their use in the 2-D FETs,
including transferred 2-D hexagonal boron nitride [85] and
the focus herein is on applying the industry-standard approach
of ALD for growing high quality, scalable films on the 2-D
semiconductors. ALD consists of two-half reactions [86], [87],
as outlined for a typical metal oxide growth in Fig. 6. The
ALD process results in one uniform layer of film and can be
repeated until the desired film thickness is achieved.

The 2-D crystals have a chemically inert basal plane, which
presents a significant challenge for nucleating ALD growth.
Instead of the precursors reacting uniformly with the surface,
they either react with defect sites or are physically adsorbed
onto the basal plane [88]–[90]. As a result, ALD does not
produce uniform thin films but requires thicknesses >15 nm
to realize closed, pinhole-free films [4], [82], [91]–[96].
In order to be able to grow thinner, more scalable, high-k
dielectrics, the basal plane must be modified so that the initial
ALD precursors are able to react uniformly with the 2-D crys-
tal. Multiple methods have been investigated such as adding
a buffer layer, a surface treatment, or changing the oxidants
used in ALD. For 2-D FETs, it is important to achieve both
a high quality, ultrathin high-k dielectric for the gate stack as
well as favorable interfacial properties between the dielectric
and 2-D channel (e.g., low-interface trap density). There is
little doubt that ALD processes will be critical for any future
2-D-based device, including more unique designs such as the
2-D negative capacitance FETs that rely heavily on ALD films
[97], [98] considering the recent success with ultrathin, doped
HfO2 films yielding scalable ferroelectric behavior [99], [100].

A. Surface Treatments

Surface treatments offer one path for enabling growth of
thin high-k dielectrics on 2-D crystals by generating more
nucleation sites [101]–[111]. The two most prevalent meth-
ods of inducing more reactive sites are to expose the sur-
face to ozone under ultraviolet radiation (UV–O3) or to a
plasma [102]–[111]. Surface treatments promote the growth
of ALD high-k dielectrics by either creating more defects or by
adding adsorbents to the basal plane, which act as reactive
sites. Both of these methods have been shown to enhance
nucleation on 2-D crystals and enable the growth of thinner,

Fig. 7. Surface treatments on 2-D crystals for creating more ALD
nucleation sites. (a) AFM and cross-sectional STEM images comparing
sample surfaces with and without UV-O3 treatment before/after the ALD
process. Adapted from [109] with the permission of AIP publishing.
(b) XPS of MoS2 with and without the O2 plasma treatment and evidence
of the resultant formation of MoO3. Adapted with permission from
[103]. Copyright 2013 American Chemical Society. (c) Raman spectra
of graphene exposed to a N2 plasma at 30, 60, and 100 W. Top-gate
graphene FET characteristics with a gate dielectric of 28 nm deposited
after a 100-W N2 plasma. Adapted from [110] with the permission of AIP
publishing.

more uniform high-k dielectrics; however, they both have
significant drawbacks.

The use of UV-O3 treatment has shown potential for
MoS2 [104]–[107], [109], [112], [113], with some reports
suggesting that oxygen covalently bonds to the sulfur with-
out the sulfur breaking its bonds to Mo. This would be
ideal because the oxygen layer is acting as a sacrificial
nucleation layer and, therefore, the underlying MoS2 is not
being damaged. Atomic force microscopy (AFM) and cross-
sectional STEM images indicate that 30 cycles of trimethyl
aluminum (TMA)/H2O using a pretreatment of UV-O3 yields a
uniform, pinhole-free dielectric at 200 °C on MoS2 [Fig. 7(a)].
This functionalization method was used to deposit HfO2 onto
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MoS2 and fabricate top-gate FETs [33], which had a 10-nm
HfO2 layer, though a 6-nm HfO2 was said to be obtained.
The UV-O3 treatment process is not consistent and has been
shown to form MoO3 in some reports and oxidize other TMDs
such WSe2 and MoSe2 [104], [106]–[108]. With UV-O3,
the thinnest useable HfO2 gate dielectric reported is 10 nm,
likely owing to unacceptable leakage currents when scaled to
6 nm [50], [105].

Another common type of surface treatment is using O2
plasma [103], [114]–[116], which greatly improves the nucle-
ation of ALD precursors on the 2-D crystals; however, this
is due to the oxidation of the crystal [103], [114]–[116].
O2 plasmas easily oxidize 2-D crystals, forming oxides such
as graphene-oxide on graphene and MoO3 on MoS2 [103],
[114]–[116]. Obviously, the formation of an oxide layer pro-
vides ideal nucleation for growing thin high-k dielectrics. For
MoS2 surface treated with O2 plasma, smooth 10-nm ALD
Al2O3 films can be achieved [Fig. 7(b)]. XPS confirms the
oxidation of MoS2 in this process [Fig. 7(b)], making the use
of an O2 plasma pretreatment impractical for growing high-k
dielectrics in 2-D FETs, as such damage to the underlying
crystal structure, and additional oxide layer in the gate stack,
are unacceptable.

Other common plasma treatments include N2 and H2 [110],
[111], [117], [118]. A N2 plasma treatment has been shown
to provide more nucleation sites for graphene and allow a
uniform 28-nm ALD Al2O3 film to be deposited [110]. Raman
spectroscopy indicates the N2 plasma creates defects as a
more pronounced D peak is observed with increased plasma
power; however, the weakness of the D peak indicates that
a reasonable amount of the graphene retains its crystallinity
[Fig. 7(c)]. The effect of N2 plasma has also been examined
on MoS2 [117], where it was found that 50 W of N2 plasma
for 5 min increased the rms of MoS2 from 1.1 to 1.5 nm,
indicating considerable damage to the crystal. A H2 plasma
pretreatment on graphene has also been used prior to the
deposition of 8-nm ALD Al2O3 [111]. Raman showed that
the hydrogenation of graphene was reversible after the ALD
Al2O3 and annealing at 400 °C; however, no devices were
made to test the robustness of the gate dielectric. While this
process may work for graphene, it does not translate to other
2-D materials such as WSe2. One report found that just 1-min
H2 plasma exposure on WSe2 in an FET severely degrades its
back-gate and top-gate electrical properties [118]. While the
use of surface treatments aid in the process of growing more
scalable ALD high-k dielectric films, they come at the cost of
damaging the underlying 2-D crystal.

B. Buffer Layers

In order to provide more nucleation sites, a buffer layer can
be deposited or grown onto the 2-D crystal prior to ALD. This
functionalization method is straightforward, easy to imple-
ment, and typically causes little damage to the underlying 2-D
crystal. Buffer layers must be insulating, able to be deposited
in thin films, and provide enough nucleation sites such that the
ALD precursors react with the surface more uniformly. Com-
mon buffer layers include metal oxide layers [17], [39]–[43]
and organic layers [90], [119]–[123]. A notable shortcoming

Fig. 8. Buffer layers for nucleating ALD growth. (a) AFM image
showing comparison of MoS2 with and without a metal oxide buffer
layer prior to the deposition of 10-nm ALD Al2O3. Adapted from [124]
with the permission of AIP publishing. (b) Due to the nature of PTCA,
the molecules lie flat on the graphene surface with functional groups
that react more readily with ALD precursors out of plane. Adapted with
permission from [90]. Copyright 2008 American Chemical Society.

to using buffer layers for ALD nucleation is that they add
to the overall gate-stack thickness and thus increase the EOT
for a 2-D FET, compromising the electrostatic gate control to
some degree.

For metal oxide buffer layers, a metal seeding layer
(1–3 nm) is formed and allowed to naturally oxidize prior
to ALD [80], [124]–[134]. Typically, the metal corresponds to
the metal oxide to be deposited. Once the metal is naturally
oxidized, there are a plethora of nucleation sites for the ALD
precursors, resulting in thinner, uniform ALD films [124].
AFM images in Fig. 8(a) show how the addition of a metal
buffer layer yields more uniform ALD films on the top of
the oxidized seeding layer, down to 3 nm [124]. Due to
the nature of the buffer layer, higher ALD temperatures can
be employed since there is no chance of the metal-oxide-
seeding layer being desorbed as with organic buffer layers
[90], [119], [121], [122], [124], [135]. The use of higher ALD
temperatures typically results in a higher quality dielectric
[86], [124], [136]. Al, Ti, and Ta seeding layers on graphene
have been studied [125] and while Raman showed Al and Ti
to have little impact on the crystal structure, cross-sectional
TEM shows the top graphene layer has more defects than the
underlying layer, and that Ta caused the most damage. Similar
to a metal oxide, graphene oxide has also been used as a buffer
layer [114], where a bilayer graphene stack was exposed to
an O2 plasma, such that only the top layer was converted into
graphene oxide [114]. Overall, while the use of metal oxide
buffer layers creates more nucleation sites and allows for more
uniform ALD, when the metal seed layer oxidizes it expands,
inducing strain and lattice disruptions that can alter the 2-D
crystal’s electrical properties [137]–[139].

Another type of buffer layer is organic films, such as those
formed by exposing the 2-D crystal to an acid like 3, 4, 9,
10-perylenetetracarboxylic acid (PTCA) or polymer mixture
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[90], [119], [121], [122], [135] prior to ALD. In the case
of treating graphene with PTCA or perylenetetracarboxylic
dianhydride (PTCDA), the molecules noncovalently bind with
the graphene surface and have functional groups that easily
and uniformly react with the precursors to yield thin ALD
films (∼3 nm) and low rms, though no top-gate FETs were
fabricated to test the robustness of the dielectric [Fig. 8(b)]
[90]. Johns et al. [121] found that the PTCDA is not con-
sumed during the ALD process; rather, the water precursor is
physically adsorbed onto the PTCDA molecules. Other organic
layers include polymers that can be spun on like photoresist
[120], [140], [141]. Photoresist has been used to not only
pattern graphene, but also to act as a nucleation layer for
ALD [140], [141]. These polymeric buffer layers tend to be
thick (>10 nm) and are, therefore, not particularly useful for
scaled dielectrics on 2-D crystals. Polymer-based buffer layers
also have a much lower dielectric constant than typical high-k
dielectrics, resulting in a much higher EOT of the gate stack.
The use of organic buffer layers also requires a low ALD
temperature so that the molecules do not desorb, which is
not ideal since dielectric films deposited at lower temperatures
tend to have a higher density of defects.

C. Modifying the ALD Process

Another way to produce scalable ALD dielectrics is by
modifying the ALD process itself by changing the oxidant,
which in thermal ALD is typically H2O vapor [Fig. 9(a)]. One
alternate oxidant is ozone (O3), which has enabled thinner
ALD films on graphene and MoS2 [142]–[144]. For both
graphene and MoS2, the first few cycles are done at a low
temperature to ensure the O3 does not react or desorb. After
these first few cycles, a higher deposition temperature may
be used to improve dielectric quality [142]. Using O3 as the
oxidant, a ∼4.5-nm (∼5.1 nm) Al2O3 film has been deposited
onto graphene (MoS2) [142]–[144]. AFM images confirm that
using O3 as an oxidant compared to H2O results in smoother
films [Fig. 9(a)] [143]. The XPS O 1s peak shows a greater
number of intermediate species (peak at 533.1 eV) occur in
the O3 films versus H2O due to incomplete reactions between
the metal organic precursor and the oxidant.

A second alternative oxidant source is plasma called plasma-
enhanced ALD (PEALD) and has been used to deposit high-k
dielectrics on graphene and MoS2 [145]–[147]. Generally,
PEALD has many advantages over thermal ALD, such as
lower deposition temperature, higher variety of films, fewer
contaminants, and faster deposition rate [87]. The plasma
used is remote; however, plasma damage is still a concern.
For the case of graphene, Raman revealed intact monolayer
graphene following a PEALD process; however, there was an
increase in the D peak indicating an increase in disorder [145].
Fig. 9(b) shows the AFM images of 10 nm of ALD versus
PEALD Al2O3 on graphene. Fig. 9 shows the transfer curves
comparing PEALD Al2O3 to e-beam evaporated SiO2.

In the case of MoS2, a sub-5-nm gate dielectric has been
deposited using PEALD. This scaled dielectric proved to be
robust and pinhole free, as it was used as a gate dielectric
in a top-gated MoS2 FET [Fig. 9(c)] [147]. The actual gate
dielectric thickness was found to be ∼3–4 nm, as confirmed

Fig. 9. Nontraditional oxidants used in ALD on 2-D crystals. (a) AFM
images of MoS2 with 30 cycles of ALD using TMA/H2O compared
to MoS2 with five cycles of ALD using TMA/O3 at 30 °C followed
by 45 cycles of ALD at 200 °C. Replacing the H2O oxidant with O3
yields uniform films of ∼5 nm. XPS spectra indicate MoO3 is not
formed while Al-O is formed; however, the higher binding energy peaks
indicate a higher concentration of incomplete reactions between TMA
and O3 compared to TMA and H2O. Adapted with permission from [143].
Copyright 2014 American Chemical Society. (b) AFM images show the
stark contrast between using O2 plasma versus H2O as oxidants to grow
10-nm ALD Al2O3 on graphene. Id–Vgs curves indicate the difference
between using 9 nm of PEALD Al2O3 and 9-nm e-beam SiO2 capping
layers. Adapted with permission from [145]. Copyright 2011 IEEE.
(c) Top-gate MoS2 FET schematic with a close up of the interface
between the MoS2 and PEALD HfO2 clearly showing the dielectric layer
is between 3 and 4 nm thick. Top-gate electrical characteristics show
strong gate control and low leakage current. Adapted with permission
from [147]. Copyright 2017 American Chemical Society.

by the cross-sectional STEM. The PEALD HfO2 process
even improved the back-gated electrical properties of the
MoS2, through the potential for some damage to the 2-D
crystal remains uncertain [147]. Most studies have been
performed on multilayer films, whereas monolayer would
provide more definitive evidence of any plasma damage. One
way to mitigate possible plasma damage is to use a metal
seeding layer prior to PEALD [118]. Further exploration is
needed of PEALD processes for growing ultrathin, high-k
dielectrics on 2-D crystals.

IV. PROSPECT

Significant advancements have been made to engineer better
contact and gate interfaces to 2-D nanomaterials. Research
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groups have been able to demonstrate low contact resistance
and reasonably high ON-current, but rarely simultaneously;
and even when considered independently, both of these metrics
are still far from the desired values. Moreover, there needs to
be consideration of the variability and yield for the proposed
improvements to the metal-2-D contact, along with a more
comprehensive theoretical picture of transport at this unique
interface to account for parameters such as gating configura-
tion and the number of 2-D layers. Recent data suggests that
pure edge contacts offer ultimate scalability for 2-D FETs and
warrant further pursuit. Gating of 2-D crystals has also come
a long way, with advancements in the ALD growth of ultra-
thin, high-quality dielectrics on the inert 2-D surfaces. While
PEALD processes show the most promise for ultimately scaled
films, there remains much to be learned about the interface
between the 2-D crystals and PEALD dielectrics. In regards
to both contacting and gating 2-D nanomaterials, there is no
doubt the unique features of the 2-D basal plane will continue
to be a source of frustration while also presenting a potential
opportunity for discovering novel solutions for future devices.
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