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Abstract

The Internet of Things (IoT) is the concept of a ubiquitous computing ecosystem in which electronics
of custom form factors are seamlessly embedded into everyday objects. At the heart of the IoT are
electronic sensors capable of detecting physical /environmental phenomena, translating these
measurements into electrical signals, and wirelessly transmitting the data for remote computing.
Critical to the development of IoT sensors and systems are low-cost materials, robust enough to
sustain stable electrical performance over medium to long periods of time, yet sensitive enough to
detect small changes in the surrounding environment. Such materials should be mechanically flexible
and amenable to solution-based processing to facilitate large scale production methods, such as roll-
to-roll printing. Carbon nanotubes (CNTs) are one of the leading material candidates to satisfy these
requirements because of their unique electrical and mechanical properties, which enable robust and
versatile devices, in combination with their chemical properties, which allow for the processing of
CNTs from solution. These advantages have enabled demonstration of a myriad of printed CNT-
based electronics and sensors on diverse substrates with wide ranges of functionality, spanning from
simple sensors based on passive devices to complex multi-stage circuitry and display electronics. In
this review, we provide a comprehensive summary of the CNT-based electronics and sensor space
with an emphasis on applications aligned with the IoT. Primary coverage is devoted to devices
consisting of randomly oriented CNT networks; however, the advantages and capabilities of single-
nanotube devices will also be discussed. Key works across various types of sensors will be reviewed and
asummary of the remaining challenges for CNT-based sensor technologies will be presented.

1. Introduction

The phrase ‘Internet of Things’ (IoT) was first coined in 1999 by Kevin Ashton in a presentation linking the
then-new idea of radio frequency identification (RFID) to supply chain management [1]. Today, the IoT concept
has broadly expanded to include a wide range of applications across various fields, including healthcare, utilities,
manufacturing, and transportation [2]. The concept of the IoT describes the computing paradigm wherein
sensors and actuators are seamlessly embedded into everyday objects (or ‘things’), and the data collected from
these embedded sensors is wirelessly shared across platforms to create a common picture of the environment.
The data collected from this ubiquitous sensor network can then be stored or processed remotely, from which
autonomous decisions can be made to create an embedded intelligence within the environment [3]. Whereas the
first Internet revolution led to the interconnection between people, the IoT will lead to the interconnection
between objects.

Critical to the growth of the IoT is the development of the hardware necessary to sense, process, and transmit
data in alow-power, low-cost manner [4]. Such hardware can come in the form of RFID technologies or wireless
sensor networks. However, the sensor hardware lies at the lowest level of the network and will form the nervous
system of the [oT infrastructure. As such, it is imperative that each sensor system is robust enough to sustain
stable electrical performance over medium to long periods of time, yet sensitive enough to detect small changes
in the environment, all while being seamlessly embedded into a host object in a thin and mechanically flexible
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Figure 1. Overview of carbon nanotube-based devices in the IoT space. Major CNT applications include flexible circuits (ring
oscillators, digital logic, etc), low-cost displays (active matrix backplanes), ubiquitous sensors (physical, chemical, biological), and IoT
systems (antennas, wearables, etc). (a), (b) Reproduced and adapted from [13]. (c) Reproduced and adapted from [24]. (d) Reproduced
and adapted from [16]. (e), (f) Reproduced and adapted from [25]. () Reproduced and adapted from [26]. (h) Reproduced and
adapted from [27]. (i), (j) Reproduced and adapted from [15]. (k) Reproduced and adapted from [21]. (1) Reproduced and adapted
from [19]. (m) Reproduced and adapted from [28]. (n) Reproduced and adapted from [22]. (0) Reproduced and adapted from [29].

(p) reproduced and adapted from [30]. (q) Reproduced and adapted from [9]. (r) Reproduced and adapted from [23].

manner, without disrupting form factor or appearance. A large variety of demonstrations of flexible sensors have
already been developed for IoT applications, including pressure/strain sensors [5], temperature sensors [6], and
chemical/gas sensors [7]. A primary challenge that remains in creating sensor networks that can facilitate an IoT
ecosystem is developing a sensor technology that is mass-manufacturable, able to capture the desired data with
sufficient accuracy, and low-cost enough to become ubiquitous [8].

One of the most prevalent electronic materials that can potentially satisfy each of the abovementioned
requirements to enable an IoT sensor technology are carbon nanotubes (CNT's) [9]. CNTs are 1D allotropes of
carbon that possess extraordinary electrical, mechanical, and chemical properties, such as extremely high carrier
mobility [10], flexibility [11], chemical stability [12, 13], as well as compatibility with solution phase processing
[14]. The electrical and mechanical properties of CNTs have been exploited in the development of a myriad of
flexible electronics demonstrations, including the operation of large-scale circuitry and displays [15-17].
Meanwhile, the chemical properties of carbon nanotubes have been exploited in the development of stable and
functional inks for printed electronics [18]. Through printing, CNT-based technologies have the potential to be
low-cost and mass-manufacturable. Due to these distinct advantages, along with the inherently high sensitivity
of carbon nanotubes owed to their nanoscale nature, alarge amount of research has been invested into the
development of CNT-based sensors. These include demonstrations of flexible strain sensors for electronic skins
[19], capacitive sensors for tire tread thickness monitoring [20, 21], and low-cost biosensors for point-of-care
diagnostics [22, 23], just to name a few. Several of these demonstrations are highlighted in figure 1, which
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outlines many of the ways in which CNT-based electronics, sensors, and displays have been utilized in producing
IoT systems.

In this review, we provide a comprehensive summary of the CNT-based electronics and sensor space with an
emphasis on applications aligned with the IoT. This work is divided into four sections, the first of which will
outline CNT properties, synthesis, and deposition methods, including printing. The second section will outline
CNT-based electronics, ranging from simple passive devices to complex, multi-stage circuitry and display
electronics. The third section will outline the CNT-sensor space, drawing on key works from the literature in
presenting the most IoT-relevant sensor demonstrations. Finally, the fourth section will highlight remaining
challenges and the outlook moving forward with CNT-based electronics in the IoT, including device variability,
stability, and competing materials. Primary coverage of CN'T-based electronics is devoted to devices that rely on
randomly oriented CNT networks, often used in thin-film transistors (TFTs). However, aligned single or few
nanotube-based nanoscale devices will also be discussed, which find primary use in nanoscale field-effect
transistors (herein referred to as CNT-FETSs).

2. Carbon nanotubes

2.1. Properties
With regards to their bond structure, CN'Ts are very similar to graphene, in that both share sp” bond
hybridization; however, the differences in CNTs stem from their 1D geometry. A CNT can be considered as a
sheet of graphene ‘rolled up’ into a seamless 1D cylinder. The diameter and electronic properties of a nanotube
are dependent upon its chiral vector, which is a circumferential vector associated with the angle in which the
CNT s ‘rolled up.” The chiral vector can be described as ¢ = na + mb, where a and b are two unit vectors that
define the location of all atoms in a honeycomb lattice [31]. The set of possible chiral vectors for CNTs are
depicted figure 2(a), which also highlights the dependence of a CNTs electronic properties on the chiral vector.
CNTs can exist in a variety of structural configurations, including armchair (n, n), zig-zag (1, 0), and chiral
(n, m), each of which is illustrated in figure 2(b).

The electronic behavior of a CNT is determined by the projection of its 1D subbands (the orientation of
which is determined by the chiral vector) onto graphene’s 2D energy dispersion space. As can be seen in
figure 2(a), for every chiral vector resulting in metallic behavior, there are two chiral vectors that result in
semiconducting behavior. Statistically, in an uncontrolled synthesis process, the electronic yield of metallic to
semiconducting CNTsis 1:2. There are many methods to synthesize carbon nanotubes, the most prominent of
which are arc discharge [36], laser ablation [37], plasma torch [38], and chemical vapor deposition (CVD) [39].
CVD s one of the most commonly used methods for CNT synthesis and will be the only method discussed in
this work. The presence of metallic tubes after CNT synthesis presents a fundamental challenge, since it is the
semiconducting properties of CNTs that are most often desired for electronics applications. The following
sections describe the methods in which CNTs are synthesized and sorted based upon chirality or electronic type.

2.2. Synthesis and orientation

Many applications benefit from the synthesis of single-walled CNTs (SWCNTs or simply CNTs herein) that are
already aligned on a substrate, ready for fabrication of devices with either one or any number of parallel
nanotubes [40]. In comparison to devices based on CNT network thin films, these devices from aligned
nanotubes avoid added resistance and other effects that arise from the CNT to CNT junctions and longer
percolation conduction paths [41]. The methods most commonly used to synthesize CNTs aligned on a
substrate involve catalytic CVD. The most prevalent of these consists of annealing ST-cut quartz to promote the
formation of step edges, depositing patterned lines of iron catalyst nanoparticles, and synthesizing CNTs by
CVD in a tube furnace with the gas flow running parallel to the quartz nano-steps [42]. The steps in the quartz
substrate guide the growing CNTs along straight lines, aligned in a consistent direction. The resulting CNTs are
aligned, but the spacing between CNTs is not consistent. This process has been frequently carried out up to the
wafer scale [43]. Once synthesized, these aligned CNTs can either be used as-grown on the quartz substrate, or
more frequently transferred onto a separate device substrate [44—46].

With proper catalyst control, it may be possible for a CVD process to be designed that synthesizes aligned
CNTs of one uniform chirality; however, current techniques result in aligned CNT's with a distribution of
diameters [47]. Hence, at the very least the metallic CNT's must be removed before semiconducting devices can
be created. Several sorting methods have been developed specifically for use in the case of aligned CNTs on a
substrate. The simplest of these is referred to as ‘burn-out’, where devices are fabricated containing a mixture of
metallic and semiconducting CNTs, after which the gate is used to limit the conductance of semiconducting
CNTs while large currents are flowed through the metallic CNTs, leading to joule heating and oxidative
destruction of the metallic CNT's [48, 49]. A more refined version of this process relies on alower current causing
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Figure 2. Structural properties between various carbon nanotubes and their sorting methods. (a) Set of possible chiral vectors for
CNTs with red dots indicating semiconducting behavior and black dots indicating metallic behavior. (b) Schematic of the various
structures that CNTs can have, depending on the chiral vector. Reproduced from [32] (¢) Schematic illustrating how increasing
amounts of small molecules attach to CNTs of increasing diameter in DGU. (d) Schematic showing how various regions of a DGU-
sorted solution exhibit different absorption spectra. (c), (d) Reproduced and adapted from [33]. (e) Illustration of the conjugated
polymer wrapping of CNTs. Reproduced and adapted from [34]. (f) Schematic showing how various conjugated polymers can select
for CNTs of specific properties. Reproduced and adapted from [35].

asmall amount of joule heating that causes thermocapillary flows in a resist layer, uncovering the metallic CNTs
and allowing them to be selectively etched by another process, such as oxygen plasma [50]. A third method
causes joule heating in metallic CNTs by exposing the growth wafer to microwave radiation after metal antennas
have been fabricated [51]. The main advantage of this last approach is that complete devices need not be
fabricated prior to the sorting step. These methods have been used by many groups to create high performance,
nanoscale devices [52—-54].

For producing SWCNTs at larger scale, other catalytic CVD-based synthesis variations have been developed
for growing CNTs without strict alignment on a substrate. Such methods include production technologies such
as HiPCO and CoMoCAT, which involve the use of an energy source, transition metal catalyst particles, and a
carbon feedstock in the gas-phase [55]. Many of these methods have some degree of control over the CNT
properties, as the diameters of the nanotubes are related to the size of the metallic nanoparticles used in the
synthesis process. Once the CNTs have been synthesized, a variety of purification steps, such as acid treatment
and filtration, are required to remove excess impurities and catalyst particles in order to form a usable product,
often in the form of a powder.

2.3. Solution-phase sorting
Although there has been significant progress in the controlled growth of CNTs with specific electronic
properties, the purity and yield of controlled growth processes have not sufficiently satisfied the requirements of
most electronic applications, especially those at large scale [41]. Alternatively, the primary means of producing
large quantities of CNTs with sufficient purity for thin-film and printing applications has been to use post-
synthesis solution-phase sorting methods, which can sort solutions of CNTs at liter-scale throughputs [56].
There exists alarge variety of CNT sorting methods, most of which were developed during the early 2000s,
including density gradient ultracentrifugation (DGU) [33], gel electrophoresis [57], conjugated polymer
extraction (CPE) [58], ion-exchange chromatography [59], and aqueous two-phase extraction [60], among
others, which can select for specific nanotube chiralities, lengths, diameter and even handedness [32, 61]. The
two methods that will be covered in this work are DGU, for its historical significance as it was the first solution-
phase sorting method to be developed, and CPE, for its current relevance and use in large scale production.
DGU was first demonstrated by Arnold et al [33], where heterogenous CNT mixtures in solution were
discriminated by structure using ultracentrifugation. Bile salts or surfactants (often sodium cholate or sodium
dodecyl sulfate) can be introduced into CNT solutions and encapsulate CNT species to varying degrees,
depending on the structure and diameter of the tubes. This process is illustrated in figure 2(c), where it can be
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Figure 3. Methods for printing CNTs across both direct-write and template-based processes. (a) Schematic diagram and operation of
an inkjet print head. (b) Schematic diagram of an aerosol jet printhead including device schematic with SEM image of CNT thin film.
(b) Reproduced and adapted from [69]. Schematic diagrams of the (c) gravure, (d) flexographic, and (e) screen printing processes. (¢)—
(e) Reproduced and adapted from [70].

seen that a larger number of salt/surfactant molecules will wrap around CNTs of larger diameters, creating
differences in buoyant densities across CNTs with varying structures. Applying ultracentrifugation to the CNT/
surfactant solution can then create a spatial density gradient across the solution, where various regions of the
medium have a homogenous distribution of CNT diameters. An image of a density gradient medium is shown in
figure 2(d), where it can be seen that different regions of the medium exhibit distinct absorbance spectra,
corresponding to the differences in CNT properties in each region. A variety of other DGU-based strategies can
also be used to discriminate CNTs of various lengths [62] and handedness [63]. However, compared to other
sorting methods, DGU is relatively inefficient and costly, as it typically requires multiple iterations to achieve
solutions of sufficiently high purity [64].

In contrast to DGU, CPE sorts CNT's using conjugated polymers often derived from polyfluorene (PFO)
[35, 58] or poly(3-alkylthiophene)s (P3AT) [34], which are highly selective for specific CNT properties. The
m-conjugated backbone of polymer molecules can selectively interact with the graphene-like 7-bond surface of
nanotubes with specific electronic properties while the polymer side chains encapsulates the CNTs and supports
dispersion in organic solvents (an illustration can be seen in figure 2(e)). The CPE process has some degree of
chiral selectivity, as shown in figure 2(f), depending upon the chemical structure of the conjugated polymer. The
CPE process is often quite simple, only consisting of sonication of a CNT /polymer solution, centrifugation in
order to sediment unwanted species, and collection of the desired s-CNT supernatant [65]. Due to its simplicity,
CPE is often combined with other sorting processes, such as silica gel adsorption, as demonstrated by Ding et al
[66], to enhance purity. Due to the simplicity, high selectivity, and high yield, CPE and its hybrids are particularly
interesting for large-scale electronic applications; however, challenges remain associated with understanding the
mechanism of sorting using conjugated polymers, which will be necessary to eventually sort CNTs of specific
chiral angles and uniform bandgaps which could be generally useful for numerous device applications not
limited to sensors [65, 67].

2.4. Solution-phase deposition and printing

With the development of sorted CNTs from solution, there remains the challenge of depositing and assembling
CNTs from solution phase. As can be expected, when CNT solutions are deposited on a substrate and the carrier
solvent evaporates, what remains is a network of randomly oriented tubes. For device applications that rely only
onasingle CNT, the concentration of the CNT solution must be sparse enough so that when the CNT's
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precipitate out of solution, there remains a low density dispersion of CNTs from which devices can be
constructed. However, for thin-film applications, the randomly oriented CNTs must form a film with sufficient
density so that nanotubes overlap and electronic percolation can occur. An SEM image of a randomly oriented
thin film of CNTs can be seen in the inset of figure 3(b). Although individual nanotubes can exhibit ballistic
transport and possess mobilities exceeding 100 000 cm® V™' s~ ' [10], electronic transport through a CNT thin
film is limited by the tube-to-tube junctions present throughout the network [68]. Additionally, there often
exists an organic residue present throughout a solution-deposited film from the remnant of the polymer used to
stabilize the CNTs in solution. Typically, an additional rinse with solvent is necessary after film deposition in
order to remove these excess organics. Common CNT network mobilities lie between 1 and 100 cm* V™' s,
depending on the tube density. Additional analysis of this topic is given in later sections of this report.

Prior to the deposition of CNT films, most substrates require some surface preparation, such as cleaning
using an O, plasma or functionalization with poly-L-lysine (PLL) [71] or aminopropyltriethoxy silane (APTES)
[72] for CNT adhesion. The most classic of the solution-phase deposition methods are substrate incubation,
drop-casting, or spin-coating. Recent demonstrations of the incubation method have been shown to produce
highly uniform films of CNTs with high tunability of the film density depending on the incubation time [73].
The drawback associated with substrate incubation, as well as all other classical CNT film deposition methods, is
the inability to selectively pattern the deposited film. In most cases, unwanted regions of CNTs must be removed
using an O, plasma. Methods such as spin coating have been used to deposit CNT films with some degree of
alignment, but also suffer from little to no control over film pattern. While simple methods, such as drop-
casting, have some degree of control over the pattern of the deposited film, typically these films suffer from poor
uniformity.

Opver the past 20 years, a number of printing techniques have been developed for directly depositing
electronic inks from solution, including CNT inks. There exist many different methods of printing, all of which
can be divided between two categories: direct-write printers and template-based printers, schematic illustrations
of which are in figure 3. Direct-write printers are well suited for low-to-medium throughput production
environments, where rapid customization and agility are required. Direct-write printers do not rely on the use of
amask or template and can selectively deposit ink through a fine-tipped nozzle to generate patterns using
computer-controlled motion. The class of direct-write printers includes inkjet, aerosol jet, syringe, and
electrohydrodynamic printers, among others, all which are capable of writing features at the 10—1000 pm scale.
Among these printers, CNT inks are most commonly printed using inkjet and aerosol jet methods.

Deposition through an inkjet printhead nozzle (illustrated in figure 3(a)) relies on a thermoelectric or
piezoelectric transducer, which propels a droplet out from the nozzle. With regards to printing CNT's and inks of
other high-aspect ratio nanostructures, inkjet printers suffer from a propensity for nozzle clogging [74], which
can limit throughput. Alternatively, aerosol jet printers (AJPs) have been shown to print CNT inks with high
reproducibility and for long periods of time [75]. The advantages in printing high-aspect ratio nanostructures
using AJPs can be attributed to their unique nozzle structure and operation, which is illustrated in figure 3(b).
Once an ink aerosol is generated using ultrasonic or pneumatic atomization, this aerosol stream is directed down
through the middle of the nozzle where it is met by a secondary inert sheath gas flow, which focuses the carrier
gas stream as it is jetted out from the nozzle and prevents it from coming into contact with the nozzle sidewalls.
Because of this sheath flow protection, AJPs have also been used to print other high-aspect ratio inks, such as
low-temperature-compatible silver nanowires (AgNWs), without a propensity for nozzle clogging [76].
Furthermore, the merits of AJPs with respect to printing high-aspect ratio nanostructures, both AgNWs and
CNTs, could enable fully low-temperature printed CNT-TFTs and the development of print-in-place
electronics, where the substrate is never removed from the printer for external processing throughout the
fabrication process [77].

Whereas direct-write printing methods are well suited for rapid prototyping and fabrication on nonplanar
surfaces, template-based printers are better suited for medium- to high-throughput production environments
as they rely on the use of masks or physical templates to stamp or transfer patterns of ink onto a substrate [70]. In
many cases, these printers are compatible with roll-to-roll production processes where printing throughputs as
high as tens of meters per second can be realized. The size scale of these printers can range from fitting onto
desktops to taking up the space of an entire room, and the start-up costs and/or turn-around time associated
with creating a physical mask or template can be quite high depending on its size and resolution. Template-
based printers include gravure, flexographic, and screen printers, schematics of which are illustrated in
figures 3(c)—(e). The inks that are compatible with this class of printers require strict rheological constraints in
comparison to direct-write printers, such as high ink viscosity which necessitates the use of organic fillers which
can limit electrical performance and require added thermal processing.

With respect to template-printing CNT-based inks, there have been relatively few demonstrations of
semiconducting CNT inks and most work has been to devoted to conductive multi-walled carbon nanotube inks
for electrochemical sensors [78]. The limitation associated with developing a semiconducting CNT ink are the
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polymer binders that need to be incorporated into the ink to increase its viscosity. Adding these binders severely
reduces thin-film performance; recent demonstrations have shown that films printed from such inks possess
mobilities less than 1 cm” V™' s 7! [79]. To avoid this low-performance limitation in the printing of CNT-based
devices from template-based methods, typically a blanket layer of CNTs is deposited using the incubation
method, followed by the template-printing of the remaining dielectric and conductive layers [80]. It should

also be noted that hybrid direct-write/template-based printing processes have been developed for fabricating
CNT-TFTs, where the CNT layer is directly printed using an inkjet printer and the other layers are gravure
printed [81].

3. Carbon nanotube electronics

3.1. Resistive/capacitive/electrochemical devices

The simplest forms of devices consisting of carbon nanotubes are two-terminal passive elements. These devices
include resistors, capacitors, inductors, and diodes. With regards to sensing applications, restive and capacitive-
based devices are most relevant. Carbon nanotube resistors can be powerful sensing elements due a nanotube’s
sensitivity to small changes in its surroundings. In the case of nanotube networks, film resistance is highly
dependent upon the density of junctions throughout the film, which is changed (and can be monitored) with the
application of strain. Capacitive elements, on the other hand, make use of carbon nanotubes as the electrode
materials, where the nanomorphology of CNTs can be exploited to enhance sensitivity. Both resistive- and
capacitive-based sensors will be discussed in ensuing sections herein. Also relevant to sensors are CNT-based
electrochemical devices, which can exploit the nanotube’s chemical and mechanical properties for chemical, gas,
or biosensors. For these applications, the mechanical flexibility and excellent electro-catalytic behavior of the
CNTs make them ideal for integration into flexible or wearable point-of-care sensors [78].

3.2.Nanoscale transistors (high performance)

While many IoT applications prioritize cost above performance, some applications require high-performance
transistors, which can necessitate nanoscale fabrication approaches. Nanoscale CNT devices typically utilize
aligned CNTs rather than films composed of random CNT networks. Scaling has long been a method of
increasing transistor or chip-level performance, and complimentary CNT-FETs have been scaled down to 5 nm
gate lengths [82, 83]. Feasibility of creating large-scale logic circuits has been demonstrated by creating a carbon
nanotube computer [84]. Promise has also been shown for RF applications by demonstrating both a CNT radio
[85] and a power amplifier with a current gain cut-off frequency above 100 GHz [86]. While CNT network
devices are more frequently pointed to for their flexibility, devices composed of aligned CNTs have also shown
high performance on flexible substrates [87].

While interest in CNTs for electronics was initially focused exclusively on nanoscale, high-performance
transistors, there has been considerable evolution and broadening in the field. No longer are CNT-FETs seen
wholly as a potential replacement for silicon in the push for smaller and better nanoscale transistors [48, 88].
Rather, even for high-performance applications, CNT-based transistors are seen as valuable for their
combination of performance and versatile integration, such as being added to the back-end-of-line to create a
3D integrated circuit (IC) for boosting computational performance in a traditional microprocessor [89] or
adding diverse functionality for a system-on-chip [90]. These integration approaches for CNT-based devices
may well include other passive elements or TFTs from nanotubes, but the primary focus thus far has been on the
high-performance CNT-FETs for these applications. Since there are needs in the growing IoT for lower power
chips with higher computational performance, progress on custom integration approaches for high-
performance CNT-FETs is worth watching.

3.3. Thin-film transistors
In contrast to nanoscale devices based on single or aligned arrays of nanotubes, CNT-TFTs consist of a randomly
oriented network of nanotubes, which mitigates challenges associated with placing and aligning CNTs, but
ultimately results in a reduction in channel performance in favor of lower costs. In a similar fashion to nanoscale
transistors, TFTs consist of a semiconducting channel, conductive contact and gate electrodes, and an insulating
dielectric layer. However, the applications for TFT's tend to be quite different from their nanoscale counterpart,
largely due to the cost-performance trade-off. Whereas nanoscale, high-performance CNT-FETs are aimed at
digital logic or 3D IC applications, TFT's are aimed at lower cost applications such as low- to medium-scale
circuitry, wearable/flexible sensors, and displays [14].

TFTs can exist in many configurations with a range of diverse material combinations. Two common
approaches for fabricating CNT-TFTs are highlighted in figure 4. The first approach involves the use of vacuum-
based processing for many (if not all) of the device components (highlighted in figures 4(a)—(c)). Such devices
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Figure 4. Outline of CNT-TFTs from different fabrication approaches, including their general characteristics. Representative

(a) schematic, (b) picture, and (c) subthreshold characteristics of vacuum-processed CNT-TFTs. (a)-(c) Reproduced and adapted
from [16, 24, 29], respectively. Representative (d) layout, (e) picture, and (f) subthreshold characteristics of fully printed CNT-TFTs
with printed polymer dielectric. Reproduced and adapted from [92]. (g) Plot of proportional relationship between CNT-TFT mobility
and CNT network density. (h) Plot of the inverse relationship between CNT-TFT mobility and Ion/Iogr- (g), (h) Reproduced and
adapted from [91]. (i) Plot of the relationship between contact resistance and contact material/geometry. Reproduced and adapted
from [71]. (j) Plot of the relationship between contact resistance and contact morphology. (i), (j) Reproduced and adapted from [69].

often consist of evaporated metal contacts and atomic layer deposition (ALD) grown dielectric layers and, in
addition to these, there are often further steps with even greater complexity. The second approach is the printing
of all device layers, as highlighted in figures 4(d)—(f), which typically produces devices that exhibit lower
performance but can be fabricated at much lower cost. In general, however, the fundamental properties of the
underlying CNT thin film remain the same, regardless of approach. As is highlighted in figure 4(g), as CNT
network density is increased, channel mobility will increase proportionally. However, there often exists a trade-
off between tube density, mobility, and on/off ratio, which is highlighted in figure 4(h) [91]. With regards to
other device components, numerous approaches have been investigated in the fabrication of CNT-TFTs, many
of which are summarized below, along with an outline of the relevant performance metrics associated with each
process method.

The two predominant approaches for depositing contact metals are through evaporation or printing. For
evaporation, typical contact materials include Pd or Au for achieving p-type transistor behavior. Although CNT's
are intrinsic semiconductors, CNT transistors often exhibit p-type behavior due to a favorability for hole
injection when using high-work function metals. One way to achieve n-type CNT transistors is to use low-work
function contact metals, such as scandium or erbium, which favor electron injection [93, 94]. However, low-
work function metals have a high propensity to oxidize, which necessitates immediate passivation and makes
them difficult to process [31]. Additional methods for polarity conversions are covered in the following
paragraphs. For printed contacts, silver nanoparticles are the most commonly used material due to their high
conductivity, relatively low cost, and long-term performance stability [95]. However, a variety of printed contact
materials have been demonstrated, including gold nanoparticles, metallic CNTs, various silver nanostructures,
and eutectic gallium indium (liquid metal) [96]. Work carried out by Cao et al[71] showed that contact
resistance to s-CNT films is directly related to contact material, with m-CNTs having the lowest contact
resistance relative to Au and Ag nanoparticles. However, later work showed that the contact interface between
Agand s-CNTs can be improved by changing the particle morphology from nanoparticles to nanoflakes [69].




10P Publishing

Nano Futures4(2020) 012001 J A Cardenas et al

Scan line

H "H‘_'r‘ll-
H “H‘_::II-
H “H‘JHP-

Data line
Data line
"

Data line
"

v,l

Figure 5. Overview of CNT-TFT circuit and display demonstrations. (a) Layout of a five-stage ring oscillator, which are frequently
demonstrated in the CNT-TFT space to assess circuit speed. Reproduced and adapted from [24]. (b) Demonstration of more complex
circuitry and integration schemes. Reproduced and adapted from [17]. (¢) Layout and schematic of a 21-stage ring oscillator.
Reproduced and adapted from [16]. (d), (¢) Images of a flexible pressure sensitive display. (f) Schematic of the active matrix circuitry
thatis used in CNT-TFT display backplanes. (d)—(f) reproduced and adapted from [15]. (g)—(i) Images showing the bio-integration
capabilities for transferable CNT-TFT circuits. Reproduced and adapted from [25].

With regards to dielectric layers, the ALD deposition of either Al,O5 or HfO, are two of the most common
dielectrics from vacuum-based deposition [97-99]. Due to the fine control of layer thickness (¢, < 50 nm),
ALD oxides are capable of producing devices with small subthreshold swing (SS < 200 mV/dec) andlow
operating voltage (Vpp < 5 V). Additionally, oxide materials such as Al,O; are capable of doping an underlying
CNT layer and converting CNT-TFT operation to n-type [24]. However, in comparison to solution-processed
polymer dielectrics, ALD oxides are less mechanically flexible and much more costly to deposit. Printed polymer
oxides such as BaTiO3/PMMA or PVP/pMSSQ composites have been shown to possess excellent flexibility
and even stretchability while being compatible with solution processing and printing [100, 92, 101]. Even
nanomaterial dielectrics, such as h-BN nanosheet networks, have shown promise [102]. However, the thickness
of solution processable dielectrics are difficult to control and are susceptible to pinhole formation, potentially
resulting in devices with low yield or poor uniformity. Alternatively, electrolyte-based dielectrics from ion gels
have been shown to produce low-voltage devices while being compatible with solution processing [103, 104].
The advantages associated with ion gels are afforded by their unique polarization mechanism compared with
simple dielectrics. Upon application of a gate voltage, mobile ions in the electrolyte accumulate at each electrode
interface, giving rise to a double-layer capacitance that is on the order of 1-100 uF cm ™~ that is independent of
ion gel thickness [105]. Such large gate capacitance values enable ultra-low voltage operation. However,
disadvantages associated with ion gels include slow polarization (switching) times and high gate leakage.

3.4. Circuits

While circuits have been realized from nanoscale (high-performance) CNT-FETs, they are less relevant for the
majority of IoT application needs (as noted above). Hence, focus in this section is on circuits from the different
types of CNT-TFTs. In order to execute more complex operations, CNT-TFTs have been widely utilized in a
variety of circuit schemes. Although TFTs are not expected to overtake or replace commercial silicon ICs in
digital processing applications, low- to medium-scale CNT-TFT-based circuitry can still be valuable for low-
cost IoT applications. For instance, electronics involving RFID tags or standalone sensors may not require
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Table 1. Benchmark comparison of the delay times for CNT-TFT based ring oscillators across various works. ‘—’ indicates the metric was
not reported in the original work.

Delay per stage (s) Vob (V) Number of stages Printed Flexible Year Channel material References
6.0e-6 15 15 No Yes 2016 CNT [109]
5.0e-6 6 51 No No 2014 CNT [110]
1.2e-6 2 5 Yes Yes 2013 CNT [103]
5.7e-9 17 5 No Yes 2018 CNT [24]
3.6e-10 1.9 5 No No 2017 CNT [106]
1.8e-11 2.8 5 No No 2018 CNT [108]
1.3e-11 1.5 — No No 1998 Silicon [111]

powerful computing and can benefit from having low-cost, on-chip TFT circuitry. Despite the relatively small
scale of CNT-TFT-based digital processing, much progress has been made toward the enabling of functional
circuits suitable for IoT applications.

The simplest circuit element demonstrated throughout the CNT-TFT space is the inverter, whose function
is to digitally invert a high input signal to alow output signal and vice versa. Inverters consist of two TFT's that
can exist in a variety of configurations, but the three most common are complimentary inverters, ambipolar
inverters, and unipolar inverters. For complimentary inverters, the input is tied to the gate of both an n-type and
p-type TFT, and the output is tied to the drain of each device. Complimentary inverters are most desirable
because of their steep voltage gain, minimal static power consumption, and tolerance to noise [29, 106].
However, it can be challenging to realize consistent n-type operation in CNT-TFT's, so many works have
exploited the ambipolar characteristics of CNT-TFTs to create complimentary-like inverters [103, 107]. Still,
these inverters exhibit negative trade-offs such as incomplete rail-to-rail output swings and high static power
consumption. Finally, unipolar inverters consisting of a p-type depletion mode load [16, 108] are the simplest to
fabricate; however, they cannot achieve zero-volt output-low signals, resulting in low voltage gains and high
static power consumption.

Once inverters with reasonable transfer characteristics can be reliably fabricated, ring oscillators (ROs) can
be used as a common test circuits, typically used to assess switching speed and overall circuit viability [109, 110].
ROs consist of an odd number of inverters cascaded into multiple stages so that the output of the previous
inverter is tied to the input of the following inverter. An image of a five-stage RO consisting of complimentary
CNT-TFT inverters is depicted in figure 5(a). An image of a larger 21-stage RO with unipolar inverters can be
seen in figure 5(c) along with its schematic diagram. Table 1 outlines a comparison of the number of stages and
delay times exhibited by CNT-TFT-based ROs across various works. Notably, Chen et al [110] have reported the
largest scale CNT-TFT integration to-date, where they demonstrated 501-stage flexible ROs consisting of a
hybrid integration of CNT-based p-TFTs and IGZO-based n-TFTs, with a total transistor count of 1002. As far
as delay times, Peng and coworkers demonstrated ROs with stage delays as low as 18 ps [108], which are the
fastest reported CNT-based ROs to-date, approaching speeds of silicon-based ROs [111].

Aside from test circuits, more complex functions have been achieved using CNT-TFTs, including NAND
and NOR gates, sequential circuits, (D-latches, flip-flops, 4 bit adders), buffers, and amplifiers [16, 17, 99, 30].
Depicted in figure 5(b) is an image of a flexible chip containing such medium-scale circuitry, specifically a 4 bit
row decoder containing up to 88 individual transistors. Jung et al [30] have used CNT-TFT-based circuitry (ROs,
buffers and amplifiers) to drive fully printed flexible antennas and wireless sensor systems. Furthermore, due to
the excellent stability and mechanical flexibility of carbon nanotube films, logic gates and sequential circuits on
thin plastic films have been shown to be transferable onto biological surfaces such as aleaf or human skin
(depicted in figures 5(g)—(i)) while maintaining high electrical performance [25].

3.5. Displays

Traditional commercial uses of TFT technologies have primarily come from the flat-panel display industry,
where arrays of transistors are utilized in an active matrix (AM) to control the state of pixels, individually.
Advantages of using an AM addressing scheme, in contrast to a passive matrix scheme, includes the
minimization of signal cross-talk as well as superior spatial resolution and contrast. Current commercialized
technologies rely on amorphous Si, polysilicon, or metal-oxide semiconductors (primarily indium gallium zinc
oxide or IGZO), which have either limited mobility, poor stability, or suffer from high-fabrication cost [14, 112].
CNT-TFTs are promising devices within the realm of display technologies because of their high mobility,
excellent stability and compatibility with low-cost fabrication (e.g. low-temperature, solution-based processing
or printing).
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A variety of works have already demonstrated CNT-TFT-based diode controllers and AM displays
[15,113, 114, 27], including fully printed display backplanes with pixel densities as high as 170 ppi[115]. Asa
further demonstration of complexity, CNT-TFT-based user-interactive displays have also been realized, which
integrate an AMOLED display with pressure sensors to create an electronic skin with visual pressure feedback
[15]. Ultimately, future work for CNT-TFT-based displays could involve a focus toward the development of
low-cost, fully printed flexible displays that can be integrated with sensors onto clothes or human skin. Cao et al
[26] have demonstrated such systems with the development of screen-printed electrochromic displays that can
be laminated onto biological surfaces. Jung et al [30] demonstrated a similar electrochromic display integrated
with a sensor and antenna. For future large-area applications, the solution-compatibility of CNTs and their
freedom from vacuum-based processing methods can enable the development of meter-scale electronic
wallpapers and interactive displays.

4. Carbon nanotube-based sensors

In combination with circuits and display electronics, carbon nanotubes have been used extensively in electronic
sensors for applications including physical sensing, chemical sensing, and biological sensing. There are multiple
reasons that CNTs provide an attractive electronic transduction platform for sensing, but the strongest
motivations extend from their excellent mechanical and electrical properties [116—118] and their compatibility
with low-cost fabrication schemes, such as printing [9, 92, 119, 120]. Recent advances in CNT synthesis, sorting,
and placement strategies [33, 121, 122], along with the development of complex electronic devices such as field-
effect transistors and TFT's [123, 124], have led to numerous sensing demonstrations. In this section, we
highlight sensing demonstrations that utilize CNTs directly as the transduction platform for applications
including pressure and strain sensors, chemical sensors, and biological sensors. All of the demonstrated
applications are highly relevant for the [oT, as they enable the translation of real-world information to electronic
signals that can be easily communicated using modern wireless technologies.

4.1. CNT-based physical sensors

Physical sensing is critical for many IoT applications. Pressure can provide information regarding the presence
of an object, a user input, or even weather monitoring. Strain sensing can also be essential in measuring
deformation, damage, or changes in ambient conditions like wind. Knowledge of such physical parameters can
provide pathways to make data-informed decisions for preventative maintenance and can also provide a means
for feedback-controlled actuators in robotic applications. This section of the review focuses primarily on sensing
the formerly mentioned parameters (pressure and strain), however, temperature [ 125] and humidity [ 126, 127]
sensors have also been demonstrated utilizing CNT transduction platforms and are important physical
parameter sensing devices as well.

The purpose of strain sensing is to transduce mechanical deformation into a communicable signal. In the
case of CNTs, mechanical deformation causes a change in their electrical properties, which can then be
ascertained through electronic monitoring. The most common method of fabricating CNT-based strain sensors
involves encapsulating a network of CNTs into a deformable composite (typically a polymeric elastomer)
[128-130]. The change in the volumetric density of the CNTs due to a deformation of the composite material
modulates the electronic parameters of the system, either in the form of altered resistance or altered capacitance.

An example of a capacitive-based strain sensor is shown in figures 6(a)—(d). In this work, carried out by
Lipomi et al [19], two orthogonal stripes of conducting CNTs are separated by a thin layer of PDMS. The
resulting sandwich structure is then fully encapsulated in PDMS. As the structure is stretched in either direction,
the separation layer becomes thinner resulting in a capacitance change that is linearly correlated to strain. The
fact that the separation layer is also deformable by pressure allows this same system to be used for pressure
sensing. Lastly, due to the optical properties of CNT thin films, this sensor is able to be fully transparent.

An example of a resistive strain sensor is shown in figures 6(e)—(g). In this work, carried out by Takei et al [5],
PDMS is coated on three sides with a conducting CNT and silver nanoparticle composite. On one of the long
ends, as seen in figure 6(e), the composite contains a much smaller concentration of silver nanoparticles. Due to
this composite structure, the resistance of one side of the whisker dominates the overall resistance of the
structure. As the whisker is bent, the strain causes the composite to elongate and the resistance to increase. This is
true for both tensile and compressive bending. The thin nature of the device makes it incredibly sensitive to
small amounts of strain and can therefore be used to sense modulation in ambient air flow. Additionally, the
whisker structure allows for spatial mapping of strain and could be used for robotic applications.

Many pressure sensors rely on the same operating mechanism of the capacitive and resistive strain sensors
above. Mechanical deformation due to an external pressure modulates the resistivity of a carbon nanotube-
based composite, or the thickness of a deformable elastomer, both leading to measurable changes in either
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Figure 6. Strain sensors utilizing electronic CNT transduction. (a), (b) Photographs of an array of dual-layer compressible capacitive
sensors. The sensor utilizes orthogonal stripes of unsorted single-walled nanotubes deposited in a method to induce buckling. The
pressure response of the sensor is shown in (c) and the elongation response is presented in (d). (e) Schematic of a whisker-like strain
sensor utilizinga CNT and Ag nanoparticle composite as a conductor with a strain-variable resistance. (f) A photograph of an array
of 6 whisker sensors with the response to pressure induced by flowing nitrogen displayed in (g). (a)—(d) are adapted from [19] and
(e)—(g) are adapted from [5].
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Figure 7. Fully printed, CNT-based smart tire sensing system. (a) The conductance versus environmental pressure of a printed
CNT-TFT. The test is completed inside a pressure chamber and communicated via Bluetooth to a mobile phone. The insets include a
photograph of the pressure chamber and a schematic of the device. (b) A printed Ag nanoparticle/ CNT hybrid sensor capable of
detecting tire rubber/tread thickness. The insets include a schematic of the device and a photograph of the sensor inside of a tire.

(c) Conceptual schematic illustration of the capabilities of arrays of these sensors to map the pressure and tread from within an
automobile tire. (a)—(c) are adapted from [136].

resistance or capacitance [131-133]. Overall, CNT-based sensors offer higher sensitivity when compared to
traditional metal-foil strain gauges, but ultimately less consistent operation based on demonstrations to
date [134].

Akey challenge that faces CNT-based sensing devices is hysteretic operation. The friction that exists between
solid-state conductors and soft materials leads to a nonuniform relaxation causing hysteretic behavior in both
strain and pressure sensing. Additionally, as the composite structure is deformable by pressure/strain, the
operation of the device can shift over time as the structure may experience changes after many relaxation cycles
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Figure 8. CNT transistors used to facilitate an active matrix pressure sensing array. (a) Layer structure of CNT-TFT connected to
pressure-sensitive rubber. (b) Photograph of wafer-scale active matrix sensing array. (c) Demonstration of spatial mapping capability
of the active matrix pressure sensor array. (a)—(c) are adapted from [28].

[135]. The low-cost fabrication and sensitivity of these devices, however, compels their use for IoT applications
with less strict performance requirements.

One specific embodiment that has recently been demonstrated (and is a direct example of the impact
CNT-based physical sensors can have on smart objects) is a smart tire system composed solely of CNT sensors.
The system incorporates two sensing modalities—a CNT-TFT pressure sensor and a cross-capacitance material
thickness sensor. The response of the sensors to automobile tire pressure and tire tread thickness are shown in
figures 7(a), (b), respectively, while a conceptual schematic of the utility of the sensor system is in figure 7(c). The
pressure sensor shows a direct modulation in conductance that is associated with changing environmental
pressure [136]. This stems from the external air-pressure causing a deformation of either the carbon nanotube
network, reducing the contact resistance between individual CNTs, or the printed dielectric, which increases the
gate’s electrostatic control of the channel. The tire tread thickness sensor works through two parallel CNT thin-
film electrodes. An oscillating electric field is applied between the two electrodes and extends out-of-plane. This
fringing field interacts with overlaid material, in this case tire tread, and the signal reflectance resulting from the
fringing field is directly related to the material’s thickness [20]. Ultimately, an array of both sensors could be used
to develop a truly smart tire, in which a map of the pressure differentials and the tire tread thickness could be
measured and communicated to the driver.

Along with CNTs and CNT-based materials being utilized for the transduction mechanism of pressure
sensors, recent work has demonstrated promising results by utilizing CNT-TFTs to generate AM sensor arrays
[15,137, 138, 28]. In this scheme, an array of CNT-TFTs are placed in series with pressure-sensitive rubber (PSR).
This serves two purposes: the transistor can act as an amplifier and transduce the modulating voltage from the PSR
to alarger current for measurement purposes, and the transistor can be used to address a specific sensor in an array,
similar to AM displays. An example of an AM sensor addressing scheme can be seen in figures 8(a)—(c). In this
work, carried out by Nela et al [28], a wafer scale, flexible CNT-TFT matrix in conjunction with PSR is able to
distinguish spatially distributed pressure. This is exemplified through the mapping of objects on the surface, a
potentially interesting endeavor for IoT applications in detecting item location and weight.

For emerging large-area applications, printing CNT-TFT-based AM arrays is a promising route to realizing
concepts such as electronic wallpapers and low-cost interactive displays, since printing is unrestricted by
substrate size or vacuum-based deposition equipment. Roll to roll (R2R) printers, which can be as large as an
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Figure 9. Overview of printed, large area, distributed sensors. (a) Image of a R2R gravure printer for high-throughput, large-area
printing. Reproduced and adapted from [139]. (b) Image of an array of gravure-printed CNT-TFTs and (c) their subthreshold
characteristics. (b), (c) Reproduced and adapted from [80]. (d) Demonstration of a distributed large-area gravure-printed pressure
sensor based on a CNT-TFT active matrix and (e) a map of its output currents during applied pressure. Reproduced and adapted from
[138].

entire room, as illustrated in figure 9(a), are best suited to produce large-area electronics, as these printers can be
scaled up to printing throughputs on the order of tens of meters per second [139]. With regards to printing
CNT-TFTs, works by Lau et al [80] have shown that distributed arrays of CNT-TFTs can be printed with high
reproducibility and yield using R2R gravure printing methods, as demonstrated in figures 9(b), (). Using
distributed arrays of CNT-TFTs, large-area pressure sensing AM arrays have been fabricated using PSR, ina
similar fashion as was outlined above [138].

4.2. CNT-based chemical sensors
One of the key advantages of an IoT infrastructure is consistent environmental monitoring to increase safety or
allow for informed environmental conservation intervention. In these regards, the concentrations of specific
molecular species within a gaseous or liquid environment are important parameters to monitor for many [oT
applications. Carbon nanotube-based electrical devices have been used as chemical sensors since their
conception [140, 141]. Due to their size scale and inherent electronic sensitivity, ambient analytes can have a
measurable electrical effect on CNTs. In this sub-section, we present a brief overview of the mechanisms in
which CNT-based devices can sense chemical analytes as well as highlight a few specific recent demonstrations.
For amore comprehensive review on CNT-based chemical sensors, we recommend a recent work by Schroeder
and coworkers [142].

The most prevalent types of electronic CNT chemical sensors utilize CNTs (either individual tubes or
networks of CNTs) as resistors or transistors. For resistive elements, the chemical analyte modifies the
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Figure 10. Sensing mechanisms of CNT-TFTs. Illustrated In—Vgs curves for three of the most prominent CNT sensing schemes. (a)
Electrostatic gating in which proximate charge modulates the potential of the CNT channel. (b) Schottky barrier modulation in which
the metal-CNT barrier potential is modulated. (c) Mobility degradation due to creation of defects or trapped charge states withina
CNT channel.
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conductivity of a single CNT, the interface of a CNT with another, or even the CNT-metal contact junction. The
means of modification are many-fold but can include increasing the junction distance within a CNT network
leading to increased inter-CNT resistance [ 143] or occupying trap states at defect sites to increase scattering [7].
Electrical measurements alone are not enough to allude to the mechanism of conductivity modification in
resistive sensors, but other methods such as Raman or absorption spectroscopy can be used for elucidation.

On the other hand, transistor-based sensors have many different transduction mechanisms, which can be
inferred from the current versus voltage characteristics [144]. The three primary methods of transduction
include electrostatic gating [ 145, 146], Schottky barrier modulation [147, 148], and mobility modulation [149].
Mlustrated I-V characteristics with subsequent band diagrams for each transduction mechanism can be seen in
figures 10(a)—(c). For electrostatic gating, a charged analyte may approach the CNT by some distance shorter
than the Debye screening length—defined as the largest distance a charge can be from a semiconductor to still
have an appreciable effect on the surface potential. External charge acts as a gating entity to shift the valence/
conduction bands with respect to the contact metal, thus modulating the Schottky barrier, which can be
measured by a change in threshold voltage.

Another mechanism of CNT transistor-based transduction is Schottky barrier modulation. In this
mechanism, electron/hole donating analytes may transfer charges directly to the nanotubes or to the contact
metals to induce a change in electron/hole carrier density or the contact metal work function, measurable by
opposing changes in both n- and p-branch carrier injection. The doping effect can also be gleaned from other
methods apart from I-V characteristics, such as Raman spectroscopy. While both Schottky barrier modulation
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Figure 11. CNT-based gaseous chemical sensors. (a) Photograph of a flexible gold nanoparticle-functionalized CNT chemiresistor.
(b) An SEM image of the chemiresistor CNT channel. The scale bar is 200 nm and inset scale bar is 100 nm. (c) The transient response
of the sensor due to various concentrations of NH;. The gas is periodically introduced for 2 min intervals beginning at 1 min and
repeated every 7 min (d) The sensitivity with respect to concentration of NH; from 200 PPB to 6 PPM (e) SEM image of a parallel CNT
transistor device for gas sensing. (f) The transfer characteristics of the parallel CNT transistor after functionalization with calixarene.
The transistor was tested in air (black), NH; (red), DMA (blue), and TMA (green). (g), (h) the transient response of the sensor to both
DMA and NH3, respectively. The blue curve in (h) represents a transistor with no calixarene functionalization. Figures (a)—(d) are
adapted from [157] and (e)—(h) are adapted from [158].

and electrostatic gating effects have been observed independently, it is also possible for sensitivity to be due to
both Schottky barrier and electrostatic mechanisms happening in conjunction with each other [150].

The final illustrated effect, which is conceptually similar to how the resistive CNT chemical sensors function, is
mobility modulation. For this mechanism, analytes absorb onto the CNTs and either induce carrier trapping or
scattering. This mechanism is observed through a decrease in both the n- and p-branch current and manifests on a
band diagram as the steepening of the band edge slopes from source to drain. Another mechanism that could be
responsible for this behavior is capacitive coupling [ 151], which is rarer as it requires close to full coverage by the
sensing analyte on the nanotube network or channel, but can be pictured as a continuous film separating the CNT
from the gating mechanism, reducing electrostatic control and device transconductance [ 144].

To produce an effective chemical sensor, there are a few metrics that must be optimized, including the
sensor’s sensitivity and specificity. Because CNTs are inherently sensitive to many ambient conditions (e.g.
humidity, various gasses, organic compounds), major challenges revolve around engineering devices to respond
only to one specific analyte-selectivity. To overcome this obstacle, many functionalization methods have been
studied, including organic polymer-based functionalization [ 152—154] and inorganic metal nanoparticle
decoration [155, 156]. Each of these directions aim to: (1) provide binding sites for desired analytes and
(2) incorporate functionalization entities that promote sensitivity.

Demonstrations of CNT-based gaseous sensors are highlighted in figure 11, specifically a resistivity-based
sensor (figures 11(a)—(d)) [157] and a transistor-based sensor (figures 11(e)—(h)) [158]. The resistivity-based
sensor consists of spray-coated CNTs decorated with Au nanoparticles on a transparent and flexible substrate
(figure 11(b)). When exposed to ammonia (NH3), the conductivity of the sensor is changed, as represented by
their parameter for sensitivity—the change in resistance divided by the initial resistance. While CNT networks
with no functionalization exhibit some sensitivity, that sensitivity is intensified with the addition of gold
nanoparticles. This is due to the known mechanism of NH; gas modulating the metal work function of gold,
thus modulating the Schottky barrier junction between the gold and the CNTs, which leads to a measurable
change in overall resistance. This method has been shown to be recoverable and is linearly associated with NH;
concentration. However, note that there is no inherent selectivity achieved in this NH; sensor as there are other
gaseous species that could cause similar modulation.

The transistor-based sensor shown in figure 11(e) is composed of parallel CNTs, deposited from solution by
dielectrophoretic alignment, between interdigitated gold electrodes and gated by a conducting substrate isolated
by a 300 nm thick SiO; layer. The carbon nanotubes are functionalized by calixarene, a cyclic oligomer, to
increase their affinity for binding with various nitrogen-based gas analytes. The sensor is shown to detect
ammonia, and after a thorough analysis of the transistor characteristics, the sensing mechanism is concluded to
be electrostatic gating due to the device exhibiting solely a threshold voltage shift with no modulation of the
transconductance. In addition to sensing ammonia, the device proved a viable sensor for other amines, such as
trimethylamine (TMA) and dimethylamine (DMA).
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Figure 12. Poly(1-amino anthracene) functionalized CNT-TFT for pH sensing. (a) Schematic of the transistor device with solution-
gating electrode. (b) Transfer curves of the device with respect to different pH in solution. (c) Transient response of the TFT at various
pH under constant bias voltage. (d) Linear response of transconductance with respect to pH. (a)—(d) are adapted from [159].

Along with gaseous chemical sensors, CNTs have also been demonstrated as viable chemical sensors in
liquid environments. In particular, CNT-TFTs functionalized with conductive polymers have proven adept at
sensing pH in solution. The demonstration highlighted in figure 12 displays an ionically gated transistor in
which the gating liquid’s pH can be determined directly from the CNT-TFT’s threshold voltage [159]. The
device consists of semiconducting carbon nanotubes that are functionalized using a conducting polymer, poly
(1-amino anthracene). A Ag/AgCl electrode is used to gate the device. As seen in the transistor curves, the
threshold voltage shifts with increasing pH. This leads to a measurable change in conductance, which is shown in
both figures 11(c) and (d). The range of the device is between pH levels of approximately 2 and 12. The sensor
also shows a stable and recoverable response, as evident by the return to initial conductance levels after cycling
the pH.

4.3. CNT-based biological sensors

The operation of CNT-based biological sensing is similar to that of chemical sensing, in which a desired analyte
prompts a measurable change in the electronic properties of carbon nanotubes. This change can be measured
through a CNT transistor’s characteristics [ 144, 160, 161], the conductance of a CNT-based film [162, 163], or
electrochemically [164-166]. The primary difference between CNT-based biological sensors (biosensors) and
chemical sensors is in the functionalization needed and the environment of operation—with biosensors
necessitating biorecognition elements and the ability to function in ionic, complex solutions. CNT-based
sensors have provided many demonstrations of electronically transduced biosensors that have the potential to
provide means for portable and even wearable diagnostics, leading to smarter and more ubiquitous healthcare
through the IoT.

A successful biosensor necessitates two features—a biorecognition element and a transduction platform.
The biorecognition element can vary drastically depending on the assay, but in general the categories can be
separated into immunoassays (those relying on antibodies/synthetic aptamers) [160, 167, 168], enzymatic
assays, and phenotype or genetic-based assays [169, 170]. CNTs offer an appropriately sensitive electronic
transduction platform either through use as an electrode in an electrochemical cell, a resistor or resistive
network, or a TFT. Additionally, recent works have demonstrated the ability to couple biorecognition elements
to individual CNTs or to CNT networks through directly binding proteins to defect sites [171] or placing
elements in proximity to CNTs through the utilization of polymer brushes [167]. Demonstrative examples of
both electrochemical sensors utilizing CNT electrodes and immunoassays utilizing CNT-TFTs will be discussed
below. For a more thorough discussion of CNTs used in biosensing applications, we recommend the review by
Yang and coworkers [172].

For electrochemical sensing, carbon nanotube networks provide a high surface area electrode that can be
functionalized with a biorecognition element, typically an enzyme. When an analyte is present, an enzymatic
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Figure 13. CNT-based biological sensors. (a) Multi-walled carbon nanotubes on a glassy carbon electrochemical cell that has been
functionalized with atrazine antibodies. (b) Electrochemical response of the sensor under various concentrations of atrazine in PBS
(pH = 7.0). (c) Schematic of a CNT-TFT that is functionalized with a polymer brush (PEG) and BSA molecules along with a
biorecognition element VHH that is specific to GFP. (d) Transfer characteristics of the TFT under various concentrations of GFP.
(e) Concentration dependence of the threshold voltage shift for GFP concentrations ranging from 1 pM to 1 uM. Figures (a), (b) are
adapted from [173] and (c)—(e) are adapted from [167].
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reaction produces an oxidizing or reducing reagent, which is measurable by cyclic voltammetry [164] or
impedance spectroscopy [173]. An example of an electrochemical nanotube-based sensor that utilizes Au
nanoparticle-functionalized multi-walled carbon nanotube electrodes can be seen in figure 13. The sensor is
functionalized with an Atrazine antibody. If the analyte is present, it alters both the capacitance of the electrode
and the electron transfer resistance. Through electrochemical impedance spectroscopy, one can then determine
the concentration of atrazine in ionic solution, 1 x phosphate-buffered solution. The outlook for this subset of
electrochemical sensors is promising as the operation is robust, even in complex biological liquids, and CNTs
offer alow-cost, high surface area electrode material that is biocompatible.

CNT transistor-based biosensors rely on the same mechanisms displayed in figure 10. A common CNT
biosensor device consists of a field-effect transistor (either a single/parallel CNT device or a thin-film network)
with antibodies or aptamers placed in direct proximity to the device. After the adsorption of tagged analytes, the
proximate charge induces a measurable threshold voltage shift in the device [167]. One of the primary challenges
with such a device is operation in ionic solutions [ 174]. The charges within the solution effectively screen
detectable charges when they are outside the Debye length. To overcome this limitation some works have used
shorter biorecognition elements, such as quarter-length aptamers [160], while others have developed methods
of increasing the effective Debye length through surface functionalization [167, 175]. It has been found that
through incorporating a polymer brush layer directly on top of the device, and embedding the biorecognition
elements within that brush, effective devices that detect analytes in complex ionic solutions can be produced. An
example of such a device is highlighted in figures 13(c)—(e). In this work, carried out by Filipiak et al [167], CNT-
TFTs are functionalized with a polyethylene glycol (PEG) layer and nanobody receptors (VHH) are embedded in
thatlayer. They find that with the PEGylated layer, they see a drastic increase in sensitivity in 100 mM Tris buffer
solution using green florescent protein (GFP) as the model antigen. Overall, the polymer brush screens
deleterious charges from the solution while allowing desired analytes to have a proximal effect on the
electrostatics of the transistor.

More personalized, precise, and ubiquitous medicine necessitates biosensor devices that can transduce
biological analytes and processes into communicable signals in a low-cost manner. Electronic transduction
provides this means through avoiding expensive optical measurement components. Specifically, CNT-based
devices that provide this electronic transduction platform show much promise for ushering low-cost and
portable diagnostics into the IoT. Nevertheless, challenges do remain for the area of CNT-based biosensors.
Despite decades of research effort and thousands of reports on a multiplicity of biosensors, no clear path exists
for designing a CNT-based biological sensing platform. Many specific challenges can be cited as reasons for this
lack of overall progress, but the primary issue is the lack of delivery on all needed performance metrics in a single
approach/device. These metrics include: strong selectivity, high sensitivity, sufficient reproducibility, high yield,
and operability in relevant biological milieu. While there have been many impressive demonstrations of CNT-
based biosensors delivering on a few of these metrics, there has yet to be one that satisfies them all. What’s more,
often the solution for realizing one of the metrics will come at the cost of achieving another. Hence, going
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forward, there must be focus on developing biosensors that can harness the advantages offered by CNTs while
also delivering on all of the needed metrics for utility in real-world applications.

5. Challenges and outlook

5.1. Device-to-device uniformity

Although the CNTs in thin films are oriented in random directions, they can exhibit good uniformity and
isotropy when the film is averaged out over a large area. However, many works have reported poor uniformity in
devices between batches or runs when depositing or printing CNT networks from solution, especially when
using drop-casting [176], spin-coating [177], or printing with unoptimized ink rheologies and surface
chemistries [178]. For instance, poor ink rheology can produce an unwanted coffee ring effect during ink
evaporation, resulting in poor film consistency [179]. These problems are exacerbated when scaling down device
dimensions to length scales that are on the order of the CNTs themselves [112].

One of the primary factors associated with film uniformity is the deposition process. Methods such as
substrate incubation or printing have been shown to produce highly uniform films, if the deposition parameters,
solution rheology, and substrate surface chemistry have been carefully optimized. Dong et al[112] recently
demonstrated a scalable method for producing highly uniform arrays of CNT films on 4 inch wafers and on
large-area0.37 m x 0.47 m backplane glass using the dip-coating method, which is a promising result for future
display applications. Additionally, Rother and coworkers [75] have demonstrated a method for reproducibly
aerosol jet printing CNT-TFTs with high-uniformity and for long periods of time by incorporating high-boiling
point co-solvents to prevent nonuniform ink evaporation. With regards to printing and optimizing the
uniformity of CNT films, it should also be noted that when fabricating CNT-based devices, the CNT films
should be the first layer to be printed on a pristine substrate, as the presence of a previous layer during the CNT
film rinsing step can result in solvent turbulence, giving rise to nonuniform channels across devices and
chips [69].

5.2. Bias stress stability

The nature of the IoT demands devices and sensors that can operate for long periods of time without exhibiting
excessive drift or degradation [180]. Sensor deployments in particular require stability in order for
measurements to be meaningful. Unfortunately, the majority of published CNT sensor demonstrations are
quick exhibitions that do not demonstrate or consider stability over time scales relevant to IoT deployments
[181, 182]. In this section, we consider works that have explored stability over time periods up to several months,
including observed shifts, decay modes, proper operating conditions, and proposed methods of increasing
stability.

Many sensors in the IoT will experience periodic application and removal of voltages as the system powers
up to send reports, while others will operate under a continuous bias as they monitor a value in near-real-time.
From the perspective of stability, it is important to understand the consequences of long-term continuous bias
or intermittent application and removal of voltages. Continuous operation of a CNT-FET composed of a few
parallel nanotubes has been carried out in air for up to one week, as shown in figure 14(a) [13]. The majority of
the week is composed of a stable regime, where fluctuations lead to coefficients of variation of approximately
5%. In this regime, no overall trend in drain current was observed. During the first few hours, however, drain
current fell to nearly half of its initial value. Because the initial and final device characteristics are very similar
(figure 14(b)), it is not likely that any permanent device degradation occurred, leading to the conclusion that the
initial drop in drain current is likely due to changes in the occupancy of charge traps [183]. Despite this initial
device settling not representing permanent degradation, the behavior could still present difficulties for deployed
sensors, possibly requiring continuously operating sensors to wait for hours of stabilization before beginning to
report meaningful data.

The settling effect just discussed also has bearing on sensors that power up periodically. When the gate
voltage of a CNT device is swept or grounded, the settling period can be reset. As shown in figure 14(c), the drain
current settling behavior can be observed repeatedly in this case. Ensuring that measurements always occur a
fixed amount of time after the sensor is powered could be one method of combating this issue, but the strong rate
of change of the drain current could lead to large variance. A pulsed voltage measurement approach may be the
best solution in this case [186].

In addition to changes in the static drain current, many sensors are influenced by drift in other device
metrics, such as the threshold voltage (Vi,). The devices with parallel CNTs just discussed showed very little
change in threshold voltage. Devices with thin-film networks of CNTs, however, have been shown to undergo
large changes in threshold voltage as a result of gate bias stress (see figure 14(d)) [184, 187]. Further study is
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Figure 14. Stability of CNT transistors under continuous bias stress. (a) Stability is demonstrated for a device with 6 parallel CNTs
under a moderate constant bias for a period of 7 d. (b) The switching characteristics of the device shown in the previous panel are very
similar before and after the week-long bias stress. (c) The initial settling of drain current in long-term tests, also seen in (a), is shown to
be a repeatable effect, likely due to changes in charge trap occupation over time. (d) Fora CNT-TFT device, the primary effect of long-
term bias stress is the threshold voltage shift shown here over time for the case of positive gate bias stress. (¢) The effects of various
passivation materials on the threshold voltage shift over bias stress time is shown, with some materials exaggerating the shift and
others reducing the shift. Figures (a)—(c) are adapted from [13], (d) from [184], and (e) from [185].

warranted to determine whether this observed behavioral difference stems from the presence of CNT junctions
or some other disparity between the particular devices studied.

Passivation of a CNT channel is the most commonly proposed method of removing device instabilities
[185, 188]. While passivation can indeed have beneficial effects, it has been shown that threshold voltage shifts
due to gate bias stress are still present with, and can even be exaggerated by, the passivation layer (see figure 14(e))
[189]. Because CNT-based sensors typically rely on interaction between nanotube and analyte, these sensors
often either preclude the use of passivation materials entirely or severely limit the viable thickness range of the
passivation material over the active sensing region of the carbon nanotube. As a result, passivation layers are
capable of providing some benefits in certain situations, but do not comprise a ubiquitous solution to the
instability challenge.

Any CNT sensor deployment must consider what voltage ranges are appropriate to use for the operating
points of the device. It has long been known that as the drain to source voltage of a CNT device is increased in an
environment that allows oxidation, eventually a breakdown voltage is reached where the nanotube is destroyed
almost immediately (<1 s) [189, 190]. When CNT-based devices are operated for long periods of time,
additional degradation modes become apparent that act on longer time scales. As the drain to source voltage is
increased, the device has been found to pass from a stable mode to a slow decay mode, then a fast decay mode,
finally reaching breakdown [13]. Current evidence suggests that devices could operate for very long periods of
time (many months at least) when voltages target the stable regime. These operating regimes have been studied
primarily in air on devices composed of parallel CNTs; more work is warranted to explore the effect of other
relevant sensing environments and any differences that arise due to the junctions in devices composed of CNT
network films.

Although some challenges still remain, the combination of passivation layers, pulsed voltage measurements,
and use of operating voltages in the stable regime illuminates the start of the path toward robust CNT-based
sensors with stability sufficient for [oT deployment. The demonstrated lack of net device degradation over
periods of months provides a promising foundation for many IoT sensors with lifetimes on this order, and the
lack of a degrading trend elicits positive implications for sensors that require lifetimes on the order of years. In
cases where pulsed voltage measurements do not provide sufficiently stable sensor readings, proper choice of
substrate material and further work exploring the reduction of substrate charge trapping could likely lead to
adequate device stability.
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5.3. Device type implications for sensing

Since sensors have been made using devices with random networks of CNTs, aligned CNTs, and single/few
parallel CNTs, it remains to be addressed which device type is ideal for each type of sensor. In contrast to devices
composed of randomly oriented CNT networks (which primarily have the advantage of simple and low-cost
fabrication), increasing the alignment of CNTs in a network has been shown to improve both yield and device
metrics such as mobility, off-current, and on/off ratio [191]. These improvements come at the cost of
incorporating an alignment strategy into the fabrication process, although some alignment methods have been
claimed to allow for industrial adoption [192]. Intrinsic device noise has also been shown to be greatly reduced
with increasing CNT alignment, leading to a 4 order of magnitude reduction in the limit of detection of a
demonstrated mercury sensor [193]. Many CNT chemical sensors measure the concentration of an analyte, with
acurrent response that is proportional to that concentration. In this type of sensor, it is typically advantageous to
have multiple CNTs, whether randomly oriented or aligned, composing the channel. For instance, a pH sensor
has been shown to offer an additional order of magnitude of resolution when the channel is composed of many
parallel CNTs as opposed to a single CNT [194].

A second type of sensor, referred to as ‘single-molecule sensors,” have received increased research attention
recently. Single-molecule sensors do not measure the concentration of an analyte by averaging many binding
events, but instead monitor single molecule behavior over time. Examples include DNA sequencers [195],
lysozyme behavior monitors [196], and molecular kinetics probes [197]. In sensors like these, only one
monitored enzyme or molecule is bound per device, such that additional CNTs beyond the CNT with the
binding site provide no benefit. In these cases, it is desirable to minimize the number of CNTs in a channel,
preferably isolating a single semiconducting CNT as the channel for each device. Beyond the rough guidelines
outlined here, the field could use further delineation of the cases in which random network, aligned, or single
CNTsareideal for sensing.

5.4. Comparison between CNTs and other thin-film semiconductors

This section briefly outlines the differences, advantages, and disadvantages associated with using CNT thin films
and other thin-film semiconductors in transistor and circuit applications. Additional options for thin-film
semiconductors include silicon (amorphous or polycrystalline), organics (such as P3HT or pentacene), oxides
(such as IGZO), and 2D nanomaterials (such as MoS, or WSe,). Both silicon and oxide-based thin-film
semiconductors have found their way into commercial products in the flat-panel display industry, owed to their
high performance, reliable fabrication and compatibility with traditional semiconductor-based manufacturing
methods.

With regards to displays, amorphous silicon (a-Si) displays had a long-standing run as being state-of-the-art,
due to their relatively low manufacturing cost and compatibility with liquid crystal display operation. However,
a-Si mobilities lie in the range of 0.5-1 cm* V™' s ™!, which is prohibitively low for newer applications such as
organic light emitting diode displays. For a period of time in the display industry, it was thought that a shift to
low-temperature polysilicon, which has mobilities ranging from 30-300 cm® V™' s ™!, would have to be made.
However, polysilicon’s excessively high manufacturing costs prevents its widespread use. Eventually, indium
gallium zinc oxide (IGZO), which has a higher mobility (1-100 cm® V™' s ") than a-Si, was adopted due to its
similarity in processing to a-Si[198].

Looking forward in the display industry, many visions of future flat-panel display technologies include the
increase in size of displays, increase in resolution, and development of new capabilities for flexible and extremely
large-area applications. These goals call for the development of new materials and low-cost, vacuum-free
processing methods. As has been outlined in previous sections, carbon nanotube thin films have great potential
to enable emerging display technologies aligned with these visions, due to their commensurate mobility, low
fabrication cost, as well as electrical and mechanical stability.

Aside from display applications, emerging IoT applications call for ubiquity. Such a vision also necessitates
the use of low-cost fabrication and calls for flexible form factors. The primary material candidates for such
applications are organics and carbon nanotubes. Although there have been flexible demonstrations of printed
metal-oxide semiconductors, they typically require vacuum-processing methods, have prohibitively high
processing temperatures, and/or are relatively inflexible [199]. In a similar fashion to CNTs, organic
semiconductors are compatible with low-temperature solution processing and possess excellent flexibility in
comparison to silicon and metal-oxide-based thin films. Historically, organics were the first printed
semiconductors, which generated the advancement of printed electronics as a field and still have potential to
enable printed optoelectronic applications, but their negative attributes preclude them from having a significant
impact in TFT applications. These include their mobilities being quite low, typically < 1 cm? V s, resulting in
low drive-current, and the fact that they suffer from poor ambient/electrical stability [200]. Printed nanotube
films, in comparison, have mobilities that can range between 1 and 100 cm” V s. Figure 15 outlines typical

21



I0OP Publishing Nano Futures4(2020) 012001 J A Cardenas et al

Poly-Si
100 ¢ S
. 00 [171‘£.,
= [ [161@108] 505
. e, ‘nae CNT
! L [95] [204] |
C\l> 10 .' [20?5] [201] i
g [31@I7] = \etal-oxide
; Fully-Printed CNT
= 1+t @ 26 iy 1
= - @111 ' -
CE) : [207] [2?0] 211] a-Si
[209] ©
0.1 1208
: Organic
107 10 10 10™
I (A/mm)
D
Figure 15. Overview of mobility versus drive current for TFTs consisting of various semiconducting channel materials (with
Vps < 1V).

mobilities and drive-currents (with Vg < 1 V) for each class of thin-film semiconductors [201-215]. However,
it should be noted that the information in figure 15 is not exhaustive and drive currents are highly dependent on
device geometries and gating / voltage bias schemes.

The emerging development of solution-processed 2D nanosheet networks (2DNNs) has created recent buzz
in the field of printed semiconductors. However, it is uncertain if these materials will consistently exhibit the
performance metrics, stability, and uniformity that established printed semiconductors have already achieved.
Typical mobility values for 2DNNGs are far less than that of a-Si [216]; however, there has been recent work
demonstrating network mobilities as high as 10 cm® V s [217]. Mobilities as high as 91 cm® V s have been
achieved using graphene networks but at the cost of low on/off ratio [ 102]. Further investigation of the
reproducibility and stability of high-performance 2DNN is necessary as well as their demonstration in
functional applications.

6. Conclusion

The emerging IoT ecosystem demands hardware consisting of reliable, low-cost materials capable of sustaining
high electrical performance over long periods of time, yet sensitive enough to facilitate sensors that can
consistently track changes in the surrounding environment. Carbon nanotubes have tremendous potential to
enable the future of 10T systems, as evident from the vast array of already demonstrated circuits, sensors, and
display electronics, many of which were fabricated using printing methods. Circuits consisting of carbon
nanotubes possess the advantage of being mechanically flexible and low cost, with operating speeds approaching
that of traditional silicon ICs. Meanwhile, the intrinsic sensitivity of CNTs, afforded by their nanoscale
dimensionality and chemical properties, holds promise for enabling a variety of physical, chemical, and
biological sensors. Additionally, many studies have shown that high CNT stability can be achieved for weeks on-
end and performance variability can be quite low, given careful process optimization.

Moving forward, a variety of research directions can be pursued to expand the scope of CNT-based devices.
For one, further exploiting the low-temperature process compatibility of CNTs can enable the development of
extremely low-cost print-in-place circuitry, sensors, and displays, where the entire electronics production flow is
carried out without removing the substrate from the printer. Another promising direction is the further
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development of CNT-based biological sensors that rely on electronic transduction for point-of-care diagnostics.
Ultimately, for thin-film-based devices, many issues associated with electrical stability must be addressed.
Outside of device concepts, relatively little study has been devoted to challenges associated with proper
encapsulation and packaging, which will be necessary before widespread use. Overall, due to the exceptional
properties, compatibility with low-cost processing methods, and variety of already demonstrated electronics
with high potential for future growth, we envision that CNT-based electronics can provide the backbone for the
wireless sensor network infrastructure in the ongoing IoT revolution.
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